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Abstract

In Jun Shao (1995), it is shown that a consistent bootstrap model selection (BMS) procedure
can be obtained by minimizing the bootstrap estimates of the prediction error. However, for
consistency, one must bootstrap a sample of size m which is less than the original sample size of
N . The method is consistent when m→∞ and m/N → 0. The optimal choice of m depends
on the true parameters and can greatly impact the viability of the selection procedure. Here,
we present a two-step bootstrap model selection (2SBMS) process which avoids the problem of
having to select an optimal m.

1 Introduction

When the relationship between the dependent variable y and independent variables x is
linear, there are many model/variable selection procedures. For instance, the Aike and Bayesian
Information Criteria and their generalized counterparts(Aike 1970; Schwarz 1978; Rao and Wu
1989). Different Cross-Validation methods and Lasso techniques can also be considered(Allen
1974; Stone 1974; Tibshirani 1996). This paper studies Jun Shao (1995)’s bootstrap model
selection (BMS) which has the problem of picking an optimal bootstrap sample size. We
propose the two-step bootstrap model selection (2SBMS), show that it retains consistency and
show by simulation that it can improve success rate significantly.

2 Bootstrap Model Selection

2.1 Linear Framework

Let y denote a vector of the variable of interest, and let X be a matrix of explanatory
variables. Suppose x has p many variables, which is independent of sample size. Then we
assume that X = (x1, .., xN )′ is full rank and:

µi = E(yi|xi) = x′iβ, var(yi|xi) = σ2 (1)

where β is a p vector of unknown parameters.

We denote α to be a subset of {1, .., p} with size pα. Thus α is a potential model. We
say that a model α is correct if it contains all nonzero elements of β. We call the smallest
correct model the optimal model, denoted by α0. We let each model α be fitted by minimizing
the least squared error, and denote the estimated model parameter by β̂α.
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The efficiency of a model can be measured by the average loss:

LN (α) =
1

N

N∑
i=1

(µi − x′iαβ̂α)2 =
1

N
||µ− µ̂α||2 (2)

Suppose y = x′β + ε, then an useful way to rewrite LN (α) is:

LN (α) = ∆N (α) +
1

N
||Hαε||2 −

2

N
(µ−Hαµ)′ε (3)

Where ∆N (α) = 1
N
||µ−Hαµ||2 and Hα = Xα(X′αXα)′X′α

For any incorrect model ∆N (α) > 0 as N → ∞. It is straightforward then to see that
the optimal model minimizes LN (α) for N sufficiently large. Thus the success of a model se-
lection technique can be judged by success of selecting the optimal α0.

Denote the model selected by a selection technique α̂, then the selection technique is called
consistent if limN→∞P (α̂ = α0) = 1.

2.2 Jun Shao Bootstrap Model Selection

Jun Shao (1995) considers the prediction error of a model:

ΓN (α) = E
[ 1

N

N∑
i=1

(zi − x′iαβ̂α)2] = σ2 + LN (α) (4)

Where β̂α is derived using a sample of size N and used to make a prediction on a new
sample of zis and xis. Then minimizing the prediction error is the same as minimizing the
average loss and the optimal model has the lowest prediction error.

It is shown in Bunke and Droge (1984) that an almost unbiased estimator for ΓN (α) can
be found. This can be done using Efron (1982,1983)’s expected excess error. However, Shao
shows that minimizing this estimate does not lead to a consistent model selection technique.
Rather, he proposes to minimize an estimate of E[Γm(α)], for some m < N . This leads to a
consistent model selection technique as m→∞ and m

N
→ 0.

Let y∗, X∗α,m be a bootstrap draw by pairs of size m for model α. Then Jun Shao pro-
poses to estimate E[Γm(α)] by:

Γ̂N,m(α) = E∗
[ 1

N

N∑
i=1

(yi − xiαβ̃
∗
α,m)2

]
(5)

where β̃∗α,m = (X∗α,m
′X∗α,m)−1X∗α,m

′y∗, the estimated βα from a bootstrap draw of size m and
E∗ is the expectation with respect to bootstrap sampling.

This procedure is highly accurate, even in small samples, for finding the true model if
one can pick the optimal m. However, as Shao and our simulation shows, large discrepancies
occur for different choices of m. In general, a large m is desirable for ruling out models which
underfit while a small m rules out better models which overfit. Therefore, without knowing
how the optimal model is positioned among the set of possible models, there is no a priori way
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of choosing m optimally.

Lastly, Jun Shao considers both bootstrapping pairs and residuals which lead to very similar
results. In the following, we consider only bootstrapping pairs because, as Shao points out,
unless there is a special structure in the xi (e.g. Hall 1990 when xi=

i
N

), it is not clear how to
bootstrap residual with bootstrap sample m < N .

3 Two Step Bootstrap Model Selection

We propose a two step method to overcome Shao’s difficulty. The difficulty was mainly
that an optimal m could not be picked ex ante without knowledge of distribution of models. If
there were mostly models which overfit, we would like a small m and vice versa. Our proposed
technique is a two step method. In this first step, we can eliminate incorrect models which
underfit. In the second step, we can use Shao’s technique with small m to rule out models
which overfit, or in the linear case, simply pick the simplest model.

In the following, we present the technique. Let us define the bootstrap sample mean squared
error, Km(α), as:

Km(α) = E∗
[ 1

m

m∑
i=1

(y∗i − x∗iαβ̃∗α,m)2
]

(6)

Let αp be the most overfit model, with subset of size p, we consider the following ratio:

Rα(m) =
KN (α)−KN (αp)

Km(α)−Km(αp)
(7)

One can show that asymptotically, if α is an incorrect model then Rα(m) converges to 1 as
m and N grows large. However, if α is a correct model, Rα(m) converges to 2m

N+m
. Proofs in

appendix.

We could compute Rα(m) and reject models for which 2m
N+m

is much closer to 1 than Rα(m).

However, for 2m
N+m

to be sufficiently different from 1 we would need to pick a small m. Recall
that in Shao’s original method, a smaller m does not allow one to rule out efficiently models
which underfit. Similarly, using Rα(m) with small m will be inefficient for rejecting models
which underfit. This can be intuitively seen in Figure 1. When m is small, even underfitting
models will have rates of change proportional to αp’s rate.

Thus we wish to pick a large m to maximize chances of ruling out underfitting models.
To do this, we note that Rα(m) can be estimated to be:

Rα(m) =
∆N (α)−ε′(Hα −Hαp)ε/N − (pα − p)σ2/N + op(1/N)

∆N (α)−ε′(Hα −Hαp)ε/N − (pα − p)σ2/m+ op(1/m)
(8)

∆N (α) is 0 for a correct model, and converges to a constant as N → ∞ for an incorrect
model. This, coupled with the observation that the asymptotic expectation of the second term
is σ2(pα − p) leads to our claims earlier.

However, because the second term can be highly volatile and 2m
N+m

is too close to one for
larger m, we consider instead R∗α(m):

R∗α(m) =
KN (α)−KN (αp)− (pα − p)σ̂2

α/N

Km(α)−Km(αp)− (pα − p)σ̂2
α/m

(9)
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Figure 1: Convergence of Bootstrap MSE

Where σ̂2
α is the estimated variance of error from the model α using the full original sample

by running an OLS regression and computing the residuals.

Asymptotically, R∗m(α) still converges to 1 for incorrect models while it will converge to
3m

m+2N
for correct models. We propose to pick m large, such as 0.7N and reject models for

which R∗α(m) > 1
2
( 3m
m+2N

+ 1). Alternatively, one could use a double bootstrap method to

generate a confidence interval for R∗α(m) and reject models whose interval lies above 3m
m+2N

.
However it becomes very computationally costly and from our simulations, there is not much
accuracy to be gained.

Finally, given the convergence results, the following holds:

Theorem: If lim infN→∞∆N (α) > 0 then the two step selection technique is consistent.
Proof in Appendix.

4 Simulation Results

In the following we present some simulation results. We simulate 4 regressors x1, x2, x3, x4
which are drawn from N (1, 4). We then generate all possible linear combinations of the 4
regressors. Then y is generated by the true model as specified with ε ∼ N (0, 2), y = x′β + ε.
Finally, we consider also a probit model where y = 1{x′β + ε− 2.5 > 0}.
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We simulate the BMS using 100 bootstrap draws. For the 2SBMS we draw 500 sam-
ples of size m = 0.7N and compute their R∗α(m) in the first step. We keep all those for which
R∗α(m) < 1

2
( 3m
m+2N

+ 1) ≈ 0.889. Then we select the model which minimizes the bootstrap

prediction error for 100 draws of size m = 1
5

for the second step. Thus our first step uses
R∗α(m) to rule out some models, and then we use Jun Shao’s BMS method in a second step for
m = 1

5
to select among the remaining one.

We run three specifications. The three specification represent three scenarios. The true
model can be small, medium, or large compared to other considered models. When the true
model is small, as per specification 1, using a small m yields the best result. However, when
the true model is large, we see that using a small m is no longer beneficial. Although picking
an optimal m is non-trivial, Jun Shao’s method does perform comparably to BIC, a common
choice among researchers.

Table 1: Simulation Results, Linear Model, 1000 runs

True Model (β1, β2, β3, β4) BIC BMS (m= 1
2N) BMS (m= 1

5N) 2SBMS
(2, 0, 0, 0), N = 50 0.848 0.628 0.973 0.966
(2, 2, 0, 0), N = 100 0.921 0.699 0.969 0.956
(2, 25 ,

2
5 ,

1
3 ), N = 200 0.971 0.834 0.684 0.962

Table 2: Simulation Results, Probit Model, 1000 runs

True Model (β1, β2, β3, β4) BIC BMS (m= 1
2N) BMS (m= 1

5N) 2SBMS
(1, 0, 0, 0), N = 50 0.833 0.356 0.856 0.895
( 12 ,

1
2 , 0, 0), N = 100 0.937 0.091 0.707 0.912

( 14 ,
1
4 ,

1
4 ,

1
4 ), N = 400 0.694 0.989 0.765 0.952

As we have argued, the 2SBMS has the advantage of not having to worry about an optimal
m. Given that the second step of the technique uses Jun Shao’s BMS for m = 1

5
it is natural

to compare the results with those of this BMS. We see that in specification 1 and 2, where
m = 1

5
performs very well, the 2SBMS performs slightly worse but remains very comparable and

above the BIC. However, in specification 3, the 2SBMS outperforms the BMS for both small
and large m. The explanation for the two observation lies within the first step of the 2SBMS.
First, there is a small chance that the true model is rejected in the first step, this explains
why the 2SBMS performs just slightly worse in specification 1 and 2 compared to the BMS
with an optimal m. Second, the first step of the 2SBMS can eliminate underfitting models who
have a lower bootstrap prediction error. Thus preventing the BMS from making a mistake in
the second step. This explains why it can perform significantly better in the third specification.

To give the reader an idea of the gains and losses of this first step process, we recorded the
number of times the true model was rejected in the first step for the first and second specifica-
tion. In the first specification 30 times out of 1000, the true model was rejected in the first step,
however, the 2SBMS only has 7 less correct guesses than the BMS using the same m = 1

5
N . In

the second specification, 15 times out 1000 the true model was rejected, but again the 2SBMS
only has 7 less correct guesses. Thus we see that the loss is relatively small, but as seen in the
third specification, the gains can be significant.

5



Lastly, we comment on the probit simulations. While we currently do not have consis-
tency results for 2SBMS under probit, we see that it performs well in simulation. Furthermore,
BMS’s problem with picking an optimal m is further aggravated in the probit case, therefore
making 2SBMS’s results even more comforting.

5 Conclusion

To summarize, we exploit the rate of change of the bootstrap MSE to improve upon Shao’s
bootstrap selection technique. Our first uses R∗α(m) to eliminate underfitting models, and then
runs Shao’s selection method using a small m to efficiently rule out overfitting models.

The main observation we make is that the difference between the bootstrap MSE of a
correct model and the most overfitting model decreases at a rate that is close to m/N . This
is because both converge to σ2 at similar rates, thus the difference converges to 0 at a stable
rate. However, an incorrect model will have a term ∆N (α) which is remains constant, thus the
differences converges to the same constant and R∗α(m) converges to 1.

This observation allows us to construct the first step of the 2SBMS. We believe that we
have not fully exploited this observation as the selection method is still quite primitive during
the first stage. However, we believe that this method is very promising as the early simula-
tion results show. We also believe it to be generalizable to non-linear, generalized linear and
autoregression models in the same way as Jun Shao’s original technique was.

Appendix

All results of the paper can be derived once the asymptotic convergence Km(α) is known.
Let E∗ and var∗ be the asymptotic expectation and variance.

First, we cite some results from Shao (1995):

1) var∗β̃
∗
α,N = (X′αXα)−1∑N

i=1 xiαxiα(yi − x′iαβ̂α)2(X′αXα)−1[1 + op(1)]
= σ2(X′αXα)−1[1 + op(1)]

2) var∗β̃
∗
α,m ≈ N

m
var∗β̃

∗
α,N

3) β̃∗α,m − β̂α = (X∗α,m
′X∗α,m)−1∑m

i=1 x
∗
iα(y∗i − x∗iα

′β̂α)

Then we derive the asymptotic convergence of Km(α) as:

Km(α) = E∗
[ 1

m

m∑
i=1

(y∗i − x∗iαβ̃
∗
α,m)2

]
= E∗

[ 1

m

m∑
i=1

(y∗i − x∗iαβ̂α)2
]

+ E∗
[ 1

m

m∑
i=1

(x∗iα
′(β̃∗α,m − β̂α)2)

]
− 2

m
E∗
[ m∑
i=1

(y∗i − x∗iαβ̂α)x∗iα
′(β̃∗α,m − β̂α)

]
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We proceed by solving for each of the three terms:

1)E∗
[ 1

m

m∑
i=1

(y∗i − x∗iαβ̂α)2
]

=
1

N

N∑
i=1

(yi − x′iβ)2

=
1

N
[||ε||2 − ε′Hαε] + ∆N (α)

2)E∗
[ 1

m

m∑
i=1

(x∗iα
′(β̃∗α,m − β̂α)2)

]
=

1

m
E∗[(β̃

∗
α,m − β̂α)′

m∑
i=1

x∗iαx
∗
iα
′(β̃∗α,m − β̂α)]

=
1

m
E∗[(β̃

∗
α,m − β̂α)′X∗α,m

′X∗α,m(β̃∗α,m − β̂α)]

=
1

m
E∗[(β̃

∗
α,m − β̂α)′

m

N
X′αXα(β̃∗α,m − β̂α)](1 + op(m))

=
1

N
Tr((X′αXα)var∗β̃

∗
α,m)

=
pασ

2

m
+ op(m)

3)
2

m
E∗
[ m∑
i=1

(y∗i − x∗iαβ̂α)x∗iα
′(β̃∗α,m − β̂α)] =

2

m
E∗[(β̃

∗
α,m − β̂α)′X∗α,m

′X∗α,m(β̃∗α,m − β̂α)]

=
2pασ

2

m
+ op(m) (from same procedure as above)

Putting those three together gives us Rα(m)’s asymptotic behavior, our results follow from
it along with the fact that ∆N (α) = 0 for a correct model as N →∞.

The asymptotic behavior of Rα(m) also gives us the theorem. We know already that BMS is
consistent, therefore, suffice to notice that as N →∞, the probability of rejecting the optimal
model in the first step goes to 0.
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