A Procedural Model of Lottery Complexity

En Hua Hu

University of Toronto

D-TEA - July 5, 2022

• EU axioms are compelling by design, especially as rules of deduction.

- EU axioms are compelling by design, especially as rules of deduction.
- EU representation is nonetheless violated, more so in complex choices.

- EU axioms are compelling by design, especially as rules of deduction.
- EU representation is nonetheless violated, more so in complex choices.
- If people agree with axioms, why do they violate them?

- EU axioms are compelling by design, especially as rules of deduction.
- EU representation is nonetheless violated, more so in complex choices.
- If people agree with axioms, why do they violate them?
- Maybe it's not the axioms, but the complexity of applying them.

- EU axioms are compelling by design, especially as rules of deduction.
- EU representation is nonetheless violated, more so in complex choices.
- If people agree with axioms, why do they violate them?
- Maybe it's not the axioms, but the complexity of applying them.
- We all know the rules of arithmetic... but we all fail at arithmetic.

• If we think axioms are true but violated due to the complexity in applying them then we need to go beyond the axiomatic framework:

- If we think axioms are true but violated due to the complexity in applying them then we need to go beyond the axiomatic framework:
 - In an axiomatic framework: Non-EU behavior \Leftrightarrow Axiom Violations.
 - No way of specifying when a choice/object is complex.

Introduction

- I offer a procedural framework in which:
 - DM uses rules to simplify lotteries before comparing them.
 - The ways they are able/unable to use the rules imply their complexity measures.

Results Preview

- Today:
 - EU \Leftrightarrow No restriction on use of rules.
 - Types of restrictions \Leftrightarrow Measures of complexity aversion.
 - I characterize procedurally the support size cost (Puri 2020) and entropy cost (Mononen 2021).
 - Partition Complexity: a new notion of complexity arising from procedural motivations.

Framework

- Monetary outcomes: $x \in \mathcal{X} = \mathbb{R}$
- Simple lotteries: $\ell \in \mathcal{L} = \Delta(\mathcal{X})$
- Notation:
 - **1** Degenerate lotteries: δ_x is the lottery yielding x with probability 1.
 - 2 Mixture: $\ell^* = \ell_1 \alpha \ell_2$ means $\ell^* = \alpha \ell_1 + (1 \alpha) \ell_2$.
 - Solution Exclusive mixture: $\ell^* = \ell_1 \overline{\alpha} \ell_2$ means $\ell^* = \alpha \ell_1 + (1 \alpha) \ell_2$ and $supp(\ell_1) \cap supp(\ell_2) = \emptyset$.

Model of Comparison

- DM uses rules to make choices.
- DM is modelled via two components:
 - **Rules**: Used to simplify a lottery or to simplify a comparison of two lotteries.
 - Choice:
 - Basic choices between simplest lotteries.
 - Complex choices which are deduced by "legal" sequences of application of rules.

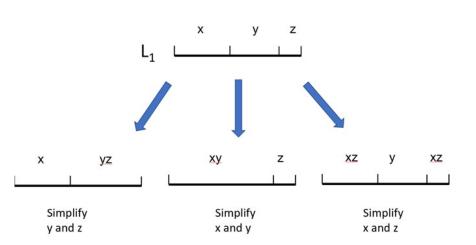
• Rules are asymmetric binary relations on lottery or pairs of lotteries.

Cancellation $(\ell_1, \ell_2)C(\ell'_1, \ell'_2)$ if $\exists \alpha, x$ such that $(\ell_1, \ell_2) = (\ell'_1 \overline{\alpha} x, \ell'_2 \overline{\alpha} x).$

• Example:

Framework

Rules



• To define Simplification, consider a relation \sim^* which pairs every binary support lotteries to a degenerate lottery:

- To define Simplification, consider a relation \sim^* which pairs every binary support lotteries to a degenerate lottery:
 - FOSD: $x\beta y$ strictly FOSD $x'\beta' y'$ then $x\beta y \sim^* z > z' \sim^* x'\beta' y'$

- To define Simplification, consider a relation \sim^* which pairs every binary support lotteries to a degenerate lottery:
 - FOSD: $x\beta y$ strictly FOSD $x'\beta' y'$ then $x\beta y \sim^* z > z' \sim^* x'\beta' y'$
 - Existence: $\forall x > w > y \exists \alpha$ such that $x \alpha y \sim^* w$.

- To define Simplification, consider a relation \sim^* which pairs every binary support lotteries to a degenerate lottery:
 - FOSD: $x\beta y$ strictly FOSD $x'\beta'y'$ then $x\beta y \sim^* z > z' \sim^* x'\beta'y'$
 - Existence: $\forall x > w > y \exists \alpha$ such that $x \alpha y \sim^* w$.

Simplification $\ell_1 S \ell_2$ if $\exists \ell^*, x \alpha y \sim^* z$ such that $\ell_1 = \ell^* \overline{\beta}(x \alpha y)$ and $\ell_2 = \ell^* \beta z$.

• Simplification lets the DM merge two outcomes into a single one.

- To define Simplification, consider a relation \sim^* which pairs every binary support lotteries to a degenerate lottery:
 - FOSD: $x\beta y$ strictly FOSD $x'\beta'y'$ then $x\beta y \sim^* z > z' \sim^* x'\beta'y'$
 - Existence: $\forall x > w > y \exists \alpha$ such that $x \alpha y \sim^* w$.

Simplification $\ell_1 S \ell_2$ if $\exists \ell^*, x \alpha y \sim^* z$ such that $\ell_1 = \ell^* \overline{\beta}(x \alpha y)$ and $\ell_2 = \ell^* \beta z$.

- Simplification lets the DM merge two outcomes into a single one.
- I assume each lottery simplifies to a unique certainty equivalent. In particular the operation is order independent.

Deductions

- The DM uses rules to deduce choice:
 - Denote $(\ell_1, \ell_2) \rightarrow (\ell'_1, \ell'_2)$ if there is a sequence of application of rules which transforms (ℓ_1, ℓ_2) to (ℓ'_1, ℓ'_2) .

• Least restrictive deduction: $\ell_1 \succeq \ell_2$ if $(\ell_1, \ell_2) \to (\ell'_1, \ell'_2)$ and $\ell'_1 \succeq \ell'_2$.

Model of Comparison: Example

Example of a Comparison Model Rules: • Cancellation. • Simplification. • Choice: • $\delta_x \succ \delta_y$ whenever x > y. • $\ell_1 \succeq \ell_2$ if $(\ell_1, \ell_2) \rightarrow (\ell'_1, \ell'_2)$ and $\ell'_1 \succeq \ell'_2$.

Expected Utility Representation

• Call the previous example the EU-Comparison Model.

Theorem 1

The following are equivalent:

- \succeq arises out of an EU-comparison model.

Some More Rules

Adjacent Simplification

Let ℓ be a lottery with outcomes $x_1 > ... > x_n$, a simplification of ℓ is *adjacent* if it simplifies outcomes x_i and x_{i+1} .

Some More Rules

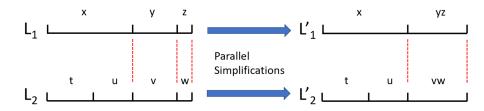
Adjacent Simplification

Let ℓ be a lottery with outcomes $x_1 > ... > x_n$, a simplification of ℓ is *adjacent* if it simplifies outcomes x_i and x_{i+1} .

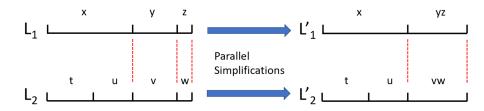
Replacement

$$(\ell_1, \ell_2)R(\ell'_1, \ell'_2)$$
 if $\exists \alpha, x, y, \ \ell'_1 = \ell_1^*\overline{\alpha}x, \ell_2 = \ell_2^*\overline{\alpha}x$ and $\ell'_1 = \ell_1^*\overline{\alpha}y, \ell'_2 = \ell_2^*\overline{\alpha}y.$

Parallel Simplifications



Parallel Simplifications



Parallel Simplifications

We say (ℓ_1, ℓ_2) to (ℓ'_1, ℓ'_2) is a pair of *parallel* simplifications if $\exists \alpha, \beta$ such that $\ell_i = \ell_i^* \overline{\alpha}(x_i \beta y_i)$ and $\ell'_i = \ell_i^* \alpha z_i$.

A pair of simplifications is parallel if it simplified the same probabilities.

In the EU model: l₁ ≥ l₂ if (l₁, l₂) → (l'₁, l'₂) after a sequence of simplifications or cancellations and l'₁ ≥ l'₂.

In the EU model: l₁ ≥ l₂ if (l₁, l₂) → (l'₁, l'₂) after a sequence of simplifications or cancellations and l'₁ ≥ l'₂.

Length Based Deduction

 $\ell_1 \succeq \ell_2$ if $(\ell_1,\ell_2) \to (\ell_1',\ell_2')$ after a pair of simplification or replacements and $\ell_1' \succeq \ell_2'$

In the EU model: l₁ ≥ l₂ if (l₁, l₂) → (l'₁, l'₂) after a sequence of simplifications or cancellations and l'₁ ≥ l'₂.

Length Based Deduction

 $\ell_1 \succeq \ell_2$ if $(\ell_1,\ell_2) \to (\ell_1',\ell_2')$ after a pair of simplification or replacements and $\ell_1' \succeq \ell_2'$

Proportion Based Deduction

 $\ell_1 \succeq \ell_2$ if $(\ell_1, \ell_2) \to (\ell'_1, \ell'_2)$ after a sequence of parallel simplifications or cancellations and $\ell'_1 \succeq \ell'_2$

Complexity Aversion

 \succeq is *complexity averse* if whenever $\ell_1 S \ell_2$ then $\ell_2 \succeq \ell_1$.

Length Procedural Model

Length Procedural Model

Q Rules:

- Replacement.
- Adjacent Simplification.
- Ochoice:
 - $\delta_x \succ \delta_y$ if x > y.
 - \succeq is complexity averse.
 - $\ell_1 \succeq \ell_2$ if $(\ell_1, \ell_2) \rightarrow (\ell'_1, \ell'_2)$ after a pair of simplification or replacements and $\ell'_1 \succeq \ell'_2$

Proportion Procedural Model

Proportion Procedural Model

Q Rules:

- Cancellation.
- Adjacent Simplification.
- Ochoice:
 - $\delta_x \succ \delta_y$ if x > y.
 - \succeq is complexity averse.
 - \succeq is mixture continuous
 - ℓ₁ ≿ ℓ₂ if (ℓ₁, ℓ₂) → (ℓ'₁, ℓ'₂) after a sequence of parallel simplifications or cancellations and ℓ'₁ ≿ ℓ'₂

Representation of Complexity Aversion

Theorem 2

Let \succeq be complete and transitive then the following are equivalent:

- \succeq arises out of a length/proportion procedural model
- \succeq is represented by a function V where:

$$V(\ell) = \sum_{x \in supp(\ell)} p_{\ell}(x)u(x) - C(\ell)$$

 $C(\ell)$ is an increasing function of the support size of ℓ . $C(\ell)$ is the entropy of ℓ multiplied by some constant.

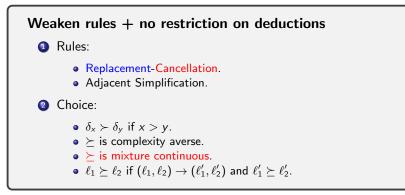
• Axiomatic representations in Puri (2020) and Mononen (2021).

Source of Complexity Attitude

• In previous models, might attribute non-EU to weakening of rules.

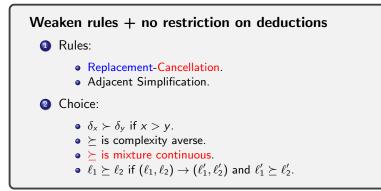
Source of Complexity Attitude

• In previous models, might attribute non-EU to weakening of rules.



Source of Complexity Attitude

• In previous models, might attribute non-EU to weakening of rules.



• Sanity check: the above models are equivalent to EU.

• Measure of complexity is revealed by the ways the DM can employ rules.

- Measure of complexity is revealed by the ways the DM can employ rules.
 - If I have a calculator, evaluating arithmetic equations isn't hard.

- Measure of complexity is revealed by the ways the DM can employ rules.
 - If I have a calculator, evaluating arithmetic equations isn't hard.
 - If my calculator can only add, then equations with division might be harder than multiplication.

- Measure of complexity is revealed by the ways the DM can employ rules.
 - If I have a calculator, evaluating arithmetic equations isn't hard.
 - If my calculator can only add, then equations with division might be harder than multiplication.
- With length based deductions \Rightarrow support size.
- With proportion based deductions \Rightarrow entropy.

• Motivation: explore more measures of complexity which arise as natural ways DMs discriminate against rules.

- Motivation: explore more measures of complexity which arise as natural ways DMs discriminate against rules.
- An example:

ℓ_1		ℓ_2	
\$20	20%	\$5.20	20%
\$1.25	20%	\$5.00	20%
\$1.50	20%	\$5.10	20%
\$9.00	20%	\$5.25	20%
\$9.50	20%	\$5.50	20%

- Motivation: explore more measures of complexity which arise as natural ways DMs discriminate against rules.
- An example:

ℓ_1		ℓ_2	
\$20	20%	\$5.20	20%
\$1.25	20%	\$5.00	20%
\$1.50	20%	\$5.10	20%
\$9.00	20%	\$5.25	20%
\$9.50	20%	\$5.50	20%

• Same outcome number and entropy, but ℓ_1 is harder to evaluate.

Motivation for Model:

- Rules perspective: merging outcomes which are close, cardinally, in values might be easier.
- Complexity perspective: complexity should not only be about "composition" of outcomes, also may depend on cardinal values.

Partition Complexity

For each ℓ there is a partition P_{ℓ} of outcomes in ℓ such that each cell is contained in mutually disjoint intervals and:

$$V_{P}(\ell) = \sum_{x \in supp(\ell)} p_{\ell}(x)u(x) - C(|supp(P_{\ell})|)$$

Intuition: DM merges, costlessly, outcomes which are close, then evaluates complexity by remaining outcomes.

Procedural Model

- Consider a DM who performs the following:
 - **1** For each lottery, some simplifications classified as *easy*, others as *hard*.
 - 2 Always performs the *easy* simplifications first.
 - Somplexity averse towards the number of hard simplifications.

Procedural Model

- Consider a DM who performs the following:
 - **1** For each lottery, some simplifications classified as *easy*, others as *hard*.
 - 2 Always performs the *easy* simplifications first.
 - S Complexity averse towards the number of hard simplifications.
- Result: The above DM (with some regularity assumption) ⇔ Partition Complexity Representation.

details

Numerical Exercise

- Data: CPC-18, aggregate choice probability for 171 choices.
- Cross Validation task: training sample of 30, testing sample of 141.
- Method: CARA utility with Gumbel error.

Numerical Exercise

- Data: CPC-18, aggregate choice probability for 171 choices.
- Cross Validation task: training sample of 30, testing sample of 141.
- Method: CARA utility with Gumbel error.

	Expected Utility		Entropy Cost		Support Size Cost		Partition Complexity	
	MSE Train	MSE Test	MSE Train	MSE Test	MSE Train	MSE Test	MSE Train	MSE Test
$Mean\ \times 100$	6.78	6.83	6.77	6.87	6.72	6.84	6.27	6.66
SD imes 100	(0.29)	(1.37)	(0.29)	(1.37)	(0.28)	(1.33)	(0.30)	(1.36)

Table: Cross Validation Task

 Paired t-test: Partition complexity has lower error both testing and training (p < 0.001) than all three other models.

En Hua Hu (University of Toronto) A Procedural Model of Lottery Complexity D-TEA - Ju

Thank You!

Partition Complexity Details

Definition

We say a decision-maker uses *fixed simplifications* if for each lottery p she uses a fixed sequence of simplification each time.

Definition

For each lottery, the set of simplification is divided in easy and hard simplifications, a sequence of simplification is *efficient* for this lottery if the easy simplifications occur before hard simplifications.

Parition Complexity Details

Definition

Partition Based Deduction

 $\forall \ell_1, \ell_2, \ \ell_1 \succeq \ell_2 \text{ if } (\ell_1, \ell_2) \rightarrow (\ell'_1, \ell'_2) \text{ is a fixed and efficient sequence which contain } n_p, n_q \text{ many hard simplifications and:}$

•
$$n_1 \leq n_2$$

•
$$\ell'_1 \succeq \ell'_2$$

Partition Complexity Details

The Partition Procedural Model

Q Rules:

Adjacent Simplifications.

Ochoice:

- $\forall x, y \in \mathcal{X}, x > y \text{ implies } \delta_x \succ \delta_y.$
- Partition Based Deduction

Back