# A Procedural Model of Lottery Complexity 

En Hua Hu<br>University of Toronto<br>D-TEA - July 5, 2022

## Motivation

- EU axioms are compelling by design, especially as rules of deduction.


## Motivation

- EU axioms are compelling by design, especially as rules of deduction.
- EU representation is nonetheless violated, more so in complex choices.


## Motivation

- EU axioms are compelling by design, especially as rules of deduction.
- EU representation is nonetheless violated, more so in complex choices.
- If people agree with axioms, why do they violate them?


## Motivation

- EU axioms are compelling by design, especially as rules of deduction.
- EU representation is nonetheless violated, more so in complex choices.
- If people agree with axioms, why do they violate them?
- Maybe it's not the axioms, but the complexity of applying them.


## Motivation

- EU axioms are compelling by design, especially as rules of deduction.
- EU representation is nonetheless violated, more so in complex choices.
- If people agree with axioms, why do they violate them?
- Maybe it's not the axioms, but the complexity of applying them.
- We all know the rules of arithmetic... but we all fail at arithmetic.


## Motivation

- If we think axioms are true but violated due to the complexity in applying them then we need to go beyond the axiomatic framework:


## Motivation

- If we think axioms are true but violated due to the complexity in applying them then we need to go beyond the axiomatic framework:
- In an axiomatic framework: Non-EU behavior $\Leftrightarrow$ Axiom Violations.
- No way of specifying when a choice/object is complex.


## Introduction

- I offer a procedural framework in which:
- DM uses rules to simplify lotteries before comparing them.
- The ways they are able/unable to use the rules imply their complexity measures.


## Results Preview

- Today:
- $\mathrm{EU} \Leftrightarrow$ No restriction on use of rules.
- Types of restrictions $\Leftrightarrow$ Measures of complexity aversion.
- I characterize procedurally the support size cost (Puri 2020) and entropy cost (Mononen 2021).
- Partition Complexity: a new notion of complexity arising from procedural motivations.


## Framework

- Monetary outcomes: $x \in \mathcal{X}=\mathbb{R}$
- Simple lotteries: $\ell \in \mathcal{L}=\Delta(\mathcal{X})$
- Notation:
(1) Degenerate lotteries: $\delta_{x}$ is the lottery yielding $x$ with probability 1 .
(2) Mixture: $\ell^{*}=\ell_{1} \alpha \ell_{2}$ means $\ell^{*}=\alpha \ell_{1}+(1-\alpha) \ell_{2}$.
(3) Exclusive mixture: $\ell^{*}=\ell_{1} \bar{\alpha} \ell_{2}$ means $\ell^{*}=\alpha \ell_{1}+(1-\alpha) \ell_{2}$ and $\operatorname{supp}\left(\ell_{1}\right) \cap \operatorname{supp}\left(\ell_{2}\right)=\emptyset$.


## Model of Comparison

- DM uses rules to make choices.
- DM is modelled via two components:
- Rules: Used to simplify a lottery or to simplify a comparison of two lotteries.
- Choice:
- Basic choices between simplest lotteries.
- Complex choices which are deduced by "legal" sequences of application of rules.


## Rules

- Rules are asymmetric binary relations on lottery or pairs of lotteries.


## Cancellation

$\left(\ell_{1}, \ell_{2}\right) C\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$ if $\exists \alpha, x$ such that $\left(\ell_{1}, \ell_{2}\right)=\left(\ell_{1}^{\prime} \bar{\alpha} x, \ell_{2}^{\prime} \bar{\alpha} x\right)$.

- Example:



## Rules



## Rules

- To define Simplification, consider a relation $\sim^{*}$ which pairs every binary support lotteries to a degenerate lottery:


## Rules

- To define Simplification, consider a relation $\sim^{*}$ which pairs every binary support lotteries to a degenerate lottery:
- FOSD: $x \beta y$ strictly FOSD $x^{\prime} \beta^{\prime} y^{\prime}$ then $x \beta y \sim^{*} z>z^{\prime} \sim^{*} x^{\prime} \beta^{\prime} y^{\prime}$


## Rules

- To define Simplification, consider a relation $\sim^{*}$ which pairs every binary support lotteries to a degenerate lottery:
- FOSD: $x \beta y$ strictly FOSD $x^{\prime} \beta^{\prime} y^{\prime}$ then $x \beta y \sim^{*} z>z^{\prime} \sim^{*} x^{\prime} \beta^{\prime} y^{\prime}$
- Existence: $\forall x>w>y \exists \alpha$ such that $x \alpha y \sim^{*} w$.


## Rules

- To define Simplification, consider a relation $\sim^{*}$ which pairs every binary support lotteries to a degenerate lottery:
- FOSD: $x \beta y$ strictly FOSD $x^{\prime} \beta^{\prime} y^{\prime}$ then $x \beta y \sim^{*} z>z^{\prime} \sim^{*} x^{\prime} \beta^{\prime} y^{\prime}$
- Existence: $\forall x>w>y \exists \alpha$ such that $x \alpha y \sim^{*} w$.


## Simplification

$\ell_{1} S \ell_{2}$ if $\exists \ell^{*}, x \alpha y \sim^{*} z$ such that $\ell_{1}=\ell^{*} \bar{\beta}(x \alpha y)$ and $\ell_{2}=\ell^{*} \beta z$.

- Simplification lets the DM merge two outcomes into a single one.


## Rules

- To define Simplification, consider a relation $\sim^{*}$ which pairs every binary support lotteries to a degenerate lottery:
- FOSD: $x \beta y$ strictly FOSD $x^{\prime} \beta^{\prime} y^{\prime}$ then $x \beta y \sim^{*} z>z^{\prime} \sim^{*} x^{\prime} \beta^{\prime} y^{\prime}$
- Existence: $\forall x>w>y \exists \alpha$ such that $x \alpha y \sim^{*} w$.


## Simplification

$\ell_{1} S \ell_{2}$ if $\exists \ell^{*}, x \alpha y \sim^{*} z$ such that $\ell_{1}=\ell^{*} \bar{\beta}(x \alpha y)$ and $\ell_{2}=\ell^{*} \beta z$.

- Simplification lets the DM merge two outcomes into a single one.
- I assume each lottery simplifies to a unique certainty equivalent. In particular the operation is order independent.


## Deductions

- The DM uses rules to deduce choice:
- Denote $\left(\ell_{1}, \ell_{2}\right) \rightarrow\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$ if there is a sequence of application of rules which transforms $\left(\ell_{1}, \ell_{2}\right)$ to $\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$.
- Least restrictive deduction: $\ell_{1} \succeq \ell_{2}$ if $\left(\ell_{1}, \ell_{2}\right) \rightarrow\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$ and $\ell_{1}^{\prime} \succeq \ell_{2}^{\prime}$.


## Model of Comparison: Example

## Example of a Comparison Model

(1) Rules:

- Cancellation.
- Simplification.
(2) Choice:
- $\delta_{x} \succ \delta_{y}$ whenever $x>y$.
- $\ell_{1} \succeq \ell_{2}$ if $\left(\ell_{1}, \ell_{2}\right) \rightarrow\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$ and $\ell_{1}^{\prime} \succeq \ell_{2}^{\prime}$.


## Expected Utility Representation

- Call the previous example the EU-Comparison Model.


## Theorem 1

The following are equivalent:

- $\succeq$ arises out of an EU-comparison model.
- $\succeq$ has an expected utility representation with continuous and strictly increasing $u$.


## Some More Rules

Adjacent Simplification
Let $\ell$ be a lottery with outcomes $x_{1}>. .>x_{n}$, a simplification of $\ell$ is adjacent if it simplifies outcomes $x_{i}$ and $x_{i+1}$.

## Some More Rules

Adjacent Simplification
Let $\ell$ be a lottery with outcomes $x_{1}>. .>x_{n}$, a simplification of $\ell$ is adjacent if it simplifies outcomes $x_{i}$ and $x_{i+1}$.

Replacement
$\left(\ell_{1}, \ell_{2}\right) R\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$ if $\exists \alpha, x, y, \ell_{1}^{\prime}=\ell_{1}^{*} \bar{\alpha} x, \ell_{2}=\ell_{2}^{*} \bar{\alpha} x$ and $\ell_{1}^{\prime}=\ell_{1}^{*} \bar{\alpha} y$, $\ell_{2}^{\prime}=\ell_{2}^{*} \bar{\alpha} y$.

## Parallel Simplifications



## Parallel Simplifications



Parallel Simplifications
We say $\left(\ell_{1}, \ell_{2}\right)$ to $\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$ is a pair of parallel simplifications if $\exists \alpha, \beta$ such that $\ell_{i}=\ell_{i}^{*} \bar{\alpha}\left(x_{i} \beta y_{i}\right)$ and $\ell_{i}^{\prime}=\ell_{i}^{*} \alpha z_{i}$.

- A pair of simplifications is parallel if it simplified the same probabilities.


## Complexity Aversion

- In the EU model: $\ell_{1} \succeq \ell_{2}$ if $\left(\ell_{1}, \ell_{2}\right) \rightarrow\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$ after a sequence of simplifications or cancellations and $\ell_{1}^{\prime} \succeq \ell_{2}^{\prime}$.


## Complexity Aversion

- In the EU model: $\ell_{1} \succeq \ell_{2}$ if $\left(\ell_{1}, \ell_{2}\right) \rightarrow\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$ after a sequence of simplifications or cancellations and $\ell_{1}^{\prime} \succeq \ell_{2}^{\prime}$.

Length Based Deduction
$\ell_{1} \succeq \ell_{2}$ if $\left(\ell_{1}, \ell_{2}\right) \rightarrow\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$ after a pair of simplification or replacements and $\ell_{1}^{\prime} \succeq \ell_{2}^{\prime}$

## Complexity Aversion

- In the EU model: $\ell_{1} \succeq \ell_{2}$ if $\left(\ell_{1}, \ell_{2}\right) \rightarrow\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$ after a sequence of simplifications or cancellations and $\ell_{1}^{\prime} \succeq \ell_{2}^{\prime}$.

Length Based Deduction
$\ell_{1} \succeq \ell_{2}$ if $\left(\ell_{1}, \ell_{2}\right) \rightarrow\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$ after a pair of simplification or replacements and $\ell_{1}^{\prime} \succeq \ell_{2}^{\prime}$

Proportion Based Deduction
$\ell_{1} \succeq \ell_{2}$ if $\left(\ell_{1}, \ell_{2}\right) \rightarrow\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$ after a sequence of parallel simplifications or cancellations and $\ell_{1}^{\prime} \succeq \ell_{2}^{\prime}$

## Complexity Aversion

Complexity Aversion
$\succeq$ is complexity averse if whenever $\ell_{1} S \ell_{2}$ then $\ell_{2} \succeq \ell_{1}$.

## Length Procedural Model

## Length Procedural Model

(1) Rules:

- Replacement.
- Adjacent Simplification.
(2) Choice:
- $\delta_{x} \succ \delta_{y}$ if $x>y$.
- $\succeq$ is complexity averse.
- $\ell_{1} \succeq \ell_{2}$ if $\left(\ell_{1}, \ell_{2}\right) \rightarrow\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$ after a pair of simplification or replacements and $\ell_{1}^{\prime} \succeq \ell_{2}^{\prime}$


## Proportion Procedural Model

## Proportion Procedural Model

(1) Rules:

- Cancellation.
- Adjacent Simplification.
(2) Choice:
- $\delta_{x} \succ \delta_{y}$ if $x>y$.
- $\succeq$ is complexity averse.
- $\succeq$ is mixture continuous
- $\ell_{1} \succeq \ell_{2}$ if $\left(\ell_{1}, \ell_{2}\right) \rightarrow\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$ after a sequence of parallel simplifications or cancellations and $\ell_{1}^{\prime} \succeq \ell_{2}^{\prime}$


## Representation of Complexity Aversion

## Theorem 2

Let $\succeq$ be complete and transitive then the following are equivalent:

- $\succeq$ arises out of a length/proportion procedural model
- $\succeq$ is represented by a function $V$ where:

$$
V(\ell)=\sum_{x \in \operatorname{supp}(\ell)} p_{\ell}(x) u(x)-C(\ell)
$$

$C(\ell)$ is an increasing function of the support size of $\ell$. $C(\ell)$ is the entropy of $\ell$ multiplied by some constant.

- Axiomatic representations in Puri (2020) and Mononen (2021).


## Source of Complexity Attitude

- In previous models, might attribute non-EU to weakening of rules.


## Source of Complexity Attitude

- In previous models, might attribute non-EU to weakening of rules.


## Weaken rules + no restriction on deductions

(1) Rules:

- Replacement-Cancellation.
- Adjacent Simplification.
(2) Choice:
- $\delta_{x} \succ \delta_{y}$ if $x>y$.
- $\succeq$ is complexity averse.
- $\succeq$ is mixture continuous.
- $\ell_{1} \succeq \ell_{2}$ if $\left(\ell_{1}, \ell_{2}\right) \rightarrow\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$ and $\ell_{1}^{\prime} \succeq \ell_{2}^{\prime}$.


## Source of Complexity Attitude

- In previous models, might attribute non-EU to weakening of rules.


## Weaken rules + no restriction on deductions

(1) Rules:

- Replacement-Cancellation.
- Adjacent Simplification.
(2) Choice:
- $\delta_{x} \succ \delta_{y}$ if $x>y$.
- $\succeq$ is complexity averse.
- $\succeq$ is mixture continuous.
- $\ell_{1} \succeq \ell_{2}$ if $\left(\ell_{1}, \ell_{2}\right) \rightarrow\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$ and $\ell_{1}^{\prime} \succeq \ell_{2}^{\prime}$.
- Sanity check: the above models are equivalent to EU.


## Takeaway

- Measure of complexity is revealed by the ways the DM can employ rules.


## Takeaway

- Measure of complexity is revealed by the ways the DM can employ rules.
- If I have a calculator, evaluating arithmetic equations isn't hard.


## Takeaway

- Measure of complexity is revealed by the ways the DM can employ rules.
- If I have a calculator, evaluating arithmetic equations isn't hard.
- If my calculator can only add, then equations with division might be harder than multiplication.


## Takeaway

- Measure of complexity is revealed by the ways the DM can employ rules.
- If I have a calculator, evaluating arithmetic equations isn't hard.
- If my calculator can only add, then equations with division might be harder than multiplication.
- With length based deductions $\Rightarrow$ support size.
- With proportion based deductions $\Rightarrow$ entropy.


## Partition Complexity

- Motivation: explore more measures of complexity which arise as natural ways DMs discriminate against rules.


## Partition Complexity

- Motivation: explore more measures of complexity which arise as natural ways DMs discriminate against rules.
- An example:

| $\ell_{1}$ |  | $\ell_{2}$ |  |
| :--- | :--- | :--- | :--- |
| $\$ 20$ | $20 \%$ | $\$ 5.20$ | $20 \%$ |
| $\$ 1.25$ | $20 \%$ | $\$ 5.00$ | $20 \%$ |
| $\$ 1.50$ | $20 \%$ | $\$ 5.10$ | $20 \%$ |
| $\$ 9.00$ | $20 \%$ | $\$ 5.25$ | $20 \%$ |
| $\$ 9.50$ | $20 \%$ | $\$ 5.50$ | $20 \%$ |

## Partition Complexity

- Motivation: explore more measures of complexity which arise as natural ways DMs discriminate against rules.
- An example:

| $\ell_{1}$ |  | $\ell_{2}$ |  |
| :--- | :--- | :--- | :--- |
| $\$ 20$ | $20 \%$ | $\$ 5.20$ | $20 \%$ |
| $\$ 1.25$ | $20 \%$ | $\$ 5.00$ | $20 \%$ |
| $\$ 1.50$ | $20 \%$ | $\$ 5.10$ | $20 \%$ |
| $\$ 9.00$ | $20 \%$ | $\$ 5.25$ | $20 \%$ |
| $\$ 9.50$ | $20 \%$ | $\$ 5.50$ | $20 \%$ |

- Same outcome number and entropy, but $\ell_{1}$ is harder to evaluate.


## Partition Complexity

## Motivation for Model:

- Rules perspective: merging outcomes which are close, cardinally, in values might be easier.
- Complexity perspective: complexity should not only be about "composition" of outcomes, also may depend on cardinal values.


## Partition Complexity

## Partition Complexity

For each $\ell$ there is a partition $P_{\ell}$ of outcomes in $\ell$ such that each cell is contained in mutually disjoint intervals and:

$$
V_{P}(\ell)=\sum_{x \in \operatorname{supp}(\ell)} p_{\ell}(x) u(x)-C\left(\left|\operatorname{supp}\left(P_{\ell}\right)\right|\right)
$$

Intuition: DM merges, costlessly, outcomes which are close, then evaluates complexity by remaining outcomes.

## Procedural Model

- Consider a DM who performs the following:
(1) For each lottery, some simplifications classified as easy, others as hard.
(2) Always performs the easy simplifications first.
(3) Complexity averse towards the number of hard simplifications.


## Procedural Model

- Consider a DM who performs the following:
(1) For each lottery, some simplifications classified as easy, others as hard.
(2) Always performs the easy simplifications first.
(3) Complexity averse towards the number of hard simplifications.
- Result: The above DM (with some regularity assumption) $\Leftrightarrow$ Partition Complexity Representation.


## Numerical Exercise

- Data: CPC-18, aggregate choice probability for 171 choices.
- Cross Validation task: training sample of 30, testing sample of 141.
- Method: CARA utility with Gumbel error.


## Numerical Exercise

- Data: CPC-18, aggregate choice probability for 171 choices.
- Cross Validation task: training sample of 30, testing sample of 141.
- Method: CARA utility with Gumbel error.

Table: Cross Validation Task

|  | Expected Utility |  | Entropy Cost |  | Support Size Cost |  | Partition Complexity |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MSE Train | MSE Test |
| Mean $\times 100$ | 6.78 | 6.83 | 6.77 | 6.87 | 6.72 | 6.84 | 6.27 | 6.66 |
| SD $\times 100$ | (0.29) | (1.37) | (0.29) | (1.37) | (0.28) | (1.33) | (0.30) | (1.36) |

- Paired t-test: Partition complexity has lower error both testing and training ( $p<0.001$ ) than all three other models.


## Thank You!

## Partition Complexity Details

## Definition <br> We say a decision-maker uses fixed simplifications if for each lottery $p$ she uses a fixed sequence of simplification each time.

## Definition

For each lottery, the set of simplification is divided in easy and hard simplifications, a sequence of simplification is efficient for this lottery if the easy simplifications occur before hard simplifications.

## Parition Complexity Details

## Definition

## Partition Based Deduction

$\forall \ell_{1}, \ell_{2}, \ell_{1} \succeq \ell_{2}$ if $\left(\ell_{1}, \ell_{2}\right) \rightarrow\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right)$ is a fixed and efficient sequence which contain $n_{p}, n_{q}$ many hard simplifications and:

- $n_{1} \leq n_{2}$
- $\ell_{1}^{\prime} \succeq \ell_{2}^{\prime}$


## Partition Complexity Details

## The Partition Procedural Model

(1) Rules:

- Adjacent Simplifications.
(2) Choice:
- $\forall x, y \in \mathcal{X}, x>y$ implies $\delta_{x} \succ \delta_{y}$.
- Partition Based Deduction

