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Abstract
I study a decision-maker who chooses between objects, each associated with a sample

of signals. I axiomatically characterize the set of choices that are consistent with established
models of belief updating. A simple thought experiment yields a natural choice pattern that
lies outside this set. In particular, the effect of increasing sample size on choice cannot be
rationalized by these models. In a controlled experiment, 95% of subjects’ choices violate models
of belief updating. Using a novel incentive-compatible confidence elicitation mechanism, I find
confidence in correctly interpreting samples influences choice. As suggested by the thought
experiment, many subjects display a sample size neglect bias which is positively associated
with higher confidence.
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1 Introduction

Much of the information used in decision-making comes in the form of a sample of signals. This
ranges from comparing different Google map reviews before deciding on a restaurant to gathering
several weather forecasts before going out. Given the ubiquity of samples, it is paramount to
understand how decision-makers (DM) choose in their presence.

Previous work has focused on accommodating a DM’s beliefs via different models of updating.
I consider instead choice behavior: how do people choose between objects for which they observe
a sample of signals? The main question I investigate is whether models of updating can accom-
modate the observed choice patterns. To do so, I theoretically characterize these models’ implied
choice behavior and test these implications experimentally. My analysis shows that the answer is
resoundingly negative. My results further hint that the discrepancy lies in these models ruling out
the possibility that DMs may lack confidence in correctly interpreting information.

I first illustrate the main takeaway via a choice pattern that cannot be rationalized by Bayesian
updating and many other models. Alice, a venture capitalist, is choosing to invest between two
projects, A and B. Each project can either succeed or fail. The outcomes of the projects are
independent, and both are equally likely to succeed ex-ante. Alice consults experts on these
projects: 5 for project A and 1 for project B. Of the experts consulted for project A, 4 out of 5 predict
its success. For project B, the sole expert predicts success. Alice can assume the experts’ predictions
are identically and independently distributed (iid) conditional on the outcome. Given the sample of
predictions, which project should Alice choose? She might choose A, and a reasonable motivation
could be that project B’s sample size is too low. Suppose she now faces the following choice
instead: 50 experts have analyzed A, and 40 predict success. For B, 10 experts unanimously predict
success. How should Alice choose now? She might now be tempted to switch to investing in B.
One rationale could be to focus on the proportion of success now that sample sizes are sufficiently
high. And if she does not, how about 400 out of 500 versus 100 out of 100? If Alice ever switches
between A and B, then her choices cannot be rationalized by Bayesian updating and other more
general models. Note, for the Bayesian, that the likelihood ratios of the samples are sufficient
statistics for the comparison of posteriors. Therefore, the Bayesian always picks the project with
the sample of predictions with a higher likelihood ratio. The likelihood ratio, given signals are
iid, can be log linearized and then becomes linear in the sample size. This then implies that
the inequalities between likelihood ratios are preserved under the multiplication of sample sizes.
Note the second choice’s samples are those of the first choice with sample sizes multiplied by 10.
Therefore switching is ruled out under Bayesian updating. A detailed analysis is in Section 2 for
the Bayesian case, I elaborate below on details for non-Bayesian updating.

One might wonder whether other models of updating can accommodate this choice pattern.
To answer this question, I characterize axiomatically the choice implications of a wide range of
models of updating. I consider a framework where the DM chooses between ex-ante identical
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objects for each of which they observe a sample of signals.1 My primitive is the DM’s choice
between pairs of such objects. I consider choices that satisfy a separability axiom. The separability
axiom states that if an object with sample x is chosen over another with sample y, denoted by
x ≻ y, then when any other sample z is added, an object with sample x + z will still be chosen
over one with y + z. Separability says that adding the same sample to two others does not reverse
preference, which can be seen as a natural choice property. I show that separability, under mild
regularity conditions, is equivalent to the updating rule being strictly monotonic in the likelihood
ratio of samples, computed under the assumption that signals are iid with known likelihoods.
Separability, however, rules out the earlier choice pattern. If x ≻ y, then separability implies
x + x ≻ y + x, and y + x ≻ y + y. Transitivity then implies x + x ≻ y + y. This process applied
10 times gives that x ≻ y implies 10 × x ≻ 10 × y, which contradicts the choice pattern of the
thought experiment. Nevertheless, separability holds for essentially all models of belief updating
as monotonicity in the likelihood ratio is a standard property. Furthermore, this result does not
assume that any particular decision rule is used in evaluating objects, only that the agent prefers
a higher probability of choosing a good object. Therefore the axiomatic characterization identifies
the empirical content of a wide class of models and allows me to test them directly via a revealed
preference approach.

I test whether separability fails and measure the extent of potential failures via a controlled
experiment. In the experiment, subjects choose between pairs of boxes, each filled with colored
balls. Each box has a type, good or bad, that determines the distribution of balls in them. Subjects
see several balls drawn with replacements from each box but not the boxes’ types. If they select
a good box, they may earn a bonus payment. This scenario mirrors the sampling environment
of the theoretical section and the thought experiment, with boxes being projects and balls being
expert predictions. Each subject’s set of choices induces a set of indifference curves. It turns out
that separability necessitates that these indifference curves be parallel straight lines. I assume
the induced indifference curves are straight lines and test whether they are parallel. I calculate
the angles of the curves relative to the x-axis and the standard deviation of these angles for each
subject. If separability holds, then the standard deviation should be close to 0, as these curves are
parallel.2 I find that the average standard deviation of angles is 27 degrees. Furthermore, only
5% of subjects have a standard deviation of less or equal to 10 degrees. My findings show that
separability, and hence the prediction of models of updating, systematically fails to accommodate
the observed choices.

My finding suggests that models satisfying separability might overlook vital components of
decision-making. I argue that separability, which presumes signals to be iid with known likeli-
hoods, neglects the possibility that the DM may face uncertainty in correctly interpreting signals.
Consider again the thought experiment: should Alice be more confident in her first choice of 4
out of 5 over 1 out of 1 or her second choice of 10 out of 10 over 40 out of 50? By "confident",

1I note signals are not restricted to binary values in my framework.
2Since signal numbers are discrete, it is not necessarily precisely 0.
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I refer to Alice’s confidence in selecting the project with the highest probability of success. This
directly ties to her confidence in correctly interpreting signals. One could argue that as the sample
sizes grow, Alice learns to interpret predictions better and becomes more confident. Therefore,
it might be natural to say that Alice is more confident in her second choice. This translates to
being more confident in having interpreted signals correctly in the second choice. However, if
signal likelihoods are known and iid, then signal interpretation should be independent of the
observed sample. In other words, separability implies a mental model where the DM already
knows the signal informativeness and rules out the role of confidence in choice. I further highlight
two features of the choice process in the thought experiment. First, Alice chose solely based on
sample characteristics: sample sizes and proportions of success. In particular, her choices were
made without referring to any information regarding signal likelihoods. Second, as the sample
size grows, one is more comfortable neglecting the sample size and choosing by the proportion of
success, which occurs in parallel to one’s increasing confidence.

To test these features of choice and the relevance of confidence, I structured my experiment with
three distinct between-subject treatments, each involving a different information structure. This
allows me to test whether subjects refer to likelihoods or only to sample characteristics. Addition-
ally, I introduce and implement a novel incentive-compatible confidence elicitation mechanism.
This enables me to test whether neglecting the sample size is associated with higher confidence.
As per my pre-registration, I run my analysis on the full sample and a sub-sample of subjects who
satisfy a weak coherence condition. This sub-sample of subjects displays a greater understanding
of the experimental set-up, allowing me to check the robustness of results and ensure results are
not driven by confusion.

My three treatments differ in the information structure provided to subjects. Two of the
three information structures have iid signals with known but different likelihoods, while the third
information structure features uncertainty regarding signal likelihoods. Subjects are told explicitly
about these information structures. The difference between the first two allows me to test whether
the likelihood matters, given that it is known, or whether subjects ignore the likelihood and choose
entirely based on sample characteristics. The third structure enables me to test if knowing the
signals’ informativeness matters. I find that the information structure has virtually no effect on the
subjects’ choices - almost all subjects violate separability, and their choices are identical under all
three treatments. This aligns with the thought experiment and suggests that subjects ignore the
information structure and choose based on sample characteristics instead. When looking at the
sub-sample, I find the same result, confirming that this is not driven by confusion or the complexity
of the environment but rather the outcome of intentional choice.

To measure confidence and study its relevance in choice, I define confidence as knowing the
correct action to take. This allows me to measure the lack of confidence by the willingness to pay
to learn the correct action. After each choice, the subject can select an option that will enable her
to learn the statistically correct choice and remake her choice at some cost. Costly learning is only
beneficial if the subject lacks confidence, and I show this is incentive-compatible for many theories

4



of confidence. This measure is also shown to be highly correlated to an unincentivized measure.
The thought experiment suggests that sample size neglect, defined as choosing entirely based on
sample proportion, is a sign of confidence. I first document that 39% and 61% of choices in my full
sample and sub-sample display sample size neglect, respectively. This is in line with the intuition
of the thought experiment, as the sub-sample is shown to be more confident and therefore more
likely to neglect the sample size. Moreover, I examine whether displaying sample size neglect is
correlated with the choice to incur costly learning. I find a subject is 1.55 times more likely to incur
costly learning on choices that do not display sample size neglect for the full sample and 1.71 times
for the sub-sample. Therefore, as suggested by the thought experiment, displaying sample size
neglect is associated with being less likely to opt to learn and higher confidence.

I also offer a theoretical foundation for the observed behaviors and the channels documented in
the thought experiment. In the real world, DMs frequently encounter uncertainty regarding signal
likelihood. For example, one may be uncertain about the harshness of reviewers or the accuracy of
experts. I model this by allowing the DM to possess uncertainty regarding the signal’s likelihood.
As this likelihood is unknown but remains fixed as more signals are gathered, it is possible to learn
about it from samples. Therefore, a DM who observes only a few signals is more uncertain, and
hence less confident, of her posterior belief. The DM can update her belief about this uncertainty,
and it dissipates as the sample size grows. This is reflected by a higher confidence when facing
large samples. However, on many occasions, the DM does not even know how to update or form
beliefs about the uncertainty. I show that, in this case, under a mild monotonicity condition, no
matter what the uncertainty is, sample size neglect is asymptotically optimal. Hence giving a
plausible explanation as to why subjects can confidently ignore the likelihoods and choose based
on sample proportion.

Organization. The paper is organized as follows. A literature review concludes the introduc-
tion. Section 2 presents a thought experiment that illustrates an intuitive behavior that conflicts
with conventional models. Section 3 establishes the environment, the axioms, and the represen-
tation result. I also present the confidence elicitation mechanism in Section 3. Section 4 gives an
exposition of the experimental design. Section 5 presents the experimental findings. Section 6
shows likelihood uncertainty can accommodate for the observed behaviors. Section 7 concludes
the paper.

Literature. This paper relates to several bodies of literature, including belief updating, corre-
lation neglect, imprecise cognition, ambiguity, and the rationalizability of dynamic choice.

It is firstly related to the literature on belief updating.3 In this literature, the work most
closely related to mine is Griffin and Tversky (1992). They also study inference from samples.
Griffin and Tversky (1992) study how subjects update beliefs upon receiving a sample of signals.
They also find that subjects overweight the sample proportion relative to the sample size. They

3See Benjamin (2019) for a survey.
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rationalize their findings via a model of belief updating. Their approach assumes a constant bias to
underweight the sample size. However, the pattern of the thought experiment relies on the sample
size’s decreasing importance as it increases. Therefore this bias is not constant and their model
cannot accommodate the choice pattern from the thought experiment. My work also contributes
by examining the choice behavior in this sampling environment. I confirm that this bias extends
from beliefs to choices. Recent works in this literature have focused on a variety of belief updating
biases (Grether, 1980; Coutts, 2019; Barron, 2021; Möbius et al., 2022). These biases are estimated
as non-Bayesian updating by varying signal likelihoods. These methodologies implicitly assume
subjects are sensitive to such changes. My results suggest that in this sampling environment,
subjects are fully insensitive to the signal likelihoods. This is evidenced by their behaviors being
identical across treatments with different signal likelihoods. Therefore, I show the sensibility
of this sensitivity assumption requires further investigation. Finally, Benjamin et al. (2016) and
Augenblick et al. (2023) conjecture DMs face uncertainty regarding the likelihood of signals to
explain particular updating biases. My results support this channel and show that DMs do not
behave as if they know the likelihood of signals. Therefore, suggesting a reevaluation of methods
and frameworks relying on this assumption.

This work is also related to the body of literature on correlation neglect, (Kroll et al., 1988; Kallir
and Sonsino, 2009; Eyster and Weizsacker, 2016; Esponda and Vespa, 2018; Enke and Zimmermann,
2019; Rees-Jones et al., 2020; Hossain and Okui, 2021; Levy et al., 2022; Fedyk and Hodson, 2023).
This literature finds that subjects tend to neglect existing correlation in non-iid environments; I
find the opposite, but not contradictory, trend that subjects fail to behave as if signals are iid when
explicitly given iid environments. This literature also documents that subjects rely on heuristics to
evaluate information, which I corroborate in my sampling environment. This literature documents
that correlation neglect may (Eyster and Weizsacker, 2016; Esponda and Vespa, 2018; Enke and
Zimmermann, 2019) or may not (Kroll et al., 1988; Kallir and Sonsino, 2009) be influenced by
whether subjects are given iid signal structures or correlated ones. In general, the consensus is that
correlation neglect is more likely to occur under limited attention and complex environments. My
experimental setting is simpler (relative to this literature), and I find that the given signal structure
does not impact a subject’s choice. One additional channel of explanation is that the representation
of samples lends itself naturally to using heuristics based on sample characteristics, and therefore,
subjects ignore the given signal likelihoods.

My paper also contributes to a recent but fast-growing literature on imprecise cognition, (Wood-
ford, 2020; Khaw et al., 2021; Frydman and Jin, 2022; Enke and Graeber, 2023). This literature is
motivated by the possibility that DMs do not perceive precisely factors that are relevant to choice.
Enke and Graeber (2023) motivate several biases by suggesting that the DM faces uncertainty and
lack of confidence regarding the correct choice. Similarly, Woodford (2020), Khaw et al. (2021),
and Frydman and Jin (2022) study risky choice via the assumption that characteristics of risky
prospects are noisily coded and evaluated. This literature typically assumes a particular form of
noisy perception and models its impact on choice. My approach begins with a characterization
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of empirical contents of models that do assume, in the language of this literature, precise percep-
tion. The separability assumption implies that the DM perceives signals as iid and assigns precise
numbers to signal likelihoods. I experimentally confirm that subjects do not perceive information
structures precisely. Therefore, my results provide support to this literature’s channels in this
sampling environment without committing to any particular model of noisy perception.

My work contributes to the literature on confidence elicitation. This literature spans various
topics. For instance, eliciting second-order beliefs with ambiguity or dynamic beliefs (Karni,
2018, 2020; Chambers and Lambert, 2021); but also elicitation of incomplete preferences, if one
takes incompleteness to stem from not knowing how to choose, (Halevy et al., 2023; Nielsen and
Rigotti, 2023); or more broadly confidence as making the correct choice (Coffman, 2014; Enke and
Graeber, 2023).4 These methods are typically either not incentive-compatible (Enke and Graeber,
2023; Nielsen and Rigotti, 2023), only incentive-compatible under strong assumptions (Karni, 2018,
2020; Chambers and Lambert, 2021), or require specialized settings (Coffman, 2014; Halevy et al.,
2023). I design a confidence elicitation method that is simple for subjects to understand, incentive-
compatible for a large class of models, and also has low implementation cost. I show that asking
just one additional and simple-to-understand binary choice question after any standard choice or
belief elicitation task is sufficient. The only requirement is that there is a correct choice (subjective
or objective) given the subject’s information. This is a very mild requirement, as confidence is
typically measured as being confident in having made the correct choice.

The paper naturally relates to the literature on ambiguity. The reader may find it helpful to
view my results through the lens of Ellsberg (1961). Ellsberg shows that DMs do not behave as if
assigning a probability distribution over states. I show analogously that this phenomenon extends
to information processing and signal interpretation. Just like Ellsberg (1961), I give a behavioral
counterpart to this epistemic phenomenon and argue for it via a thought experiment. Recent
works have investigated ambiguous information structures (Epstein and Schneider, 2007; Epstein
and Halevy, 2019, 2023; Ngangoué, 2021; Kellner et al., 2022; Liang, 2023; Shishkin and Ortoleva,
2023), these can be broadly viewed as non-iid. The literature finds that updating biases are worse
given ambiguous information, and there is some interaction between ambiguity sensitivity and
updating. A line of works similar to mine is Epstein and Seo (2010, 2015). These works focus
on the behavioral implication of ambiguity concerning information which does not fade away
asymptotically. They allow for a flexible model of choices: the DM can bet on sequences of signal
realizations. Their behavioral axiom, symmetry, implies signals are perceived to be identically but
not necessarily independently distributed. They are then able to relate this axiom to models of
ambiguity in this dynamic framework. Their works are therefore parallel and complementary to
mine but with differing insights. Their work, and this literature in general, study the importance
of ambiguity attitudes in dynamic choice. I highlight instead that the ambiguous perception of
information structure has behavioral implications independent of particular ambiguity attitudes.

4Additionally, the issue has been explored empirically as well, see Giustinelli et al. (2022) and Kerwin and Pandey
(2023).
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I show that uncertainty regarding the information structure, without ambiguity attitudes, is suf-
ficient to yield the behavior of the thought experiment - which is impossible under unambiguous
perception. Finally, my experiment suggests that ambiguous perception of information is a preva-
lent phenomenon. Even when subjects are told exactly the accuracy of information - their choice
behavior still cannot be rationalized by models that assume they know this accuracy.

My work contributes lastly to the literature on the rationalizability of dynamic choice. Several
papers have studied the properties of choices consistent with various information structures. For
instance, Shmaya and Yariv (2016) show restrictions on the subject’s perception of the information
structure are vital in generating testable conjectures. In particular, Bayesian updating can generate
any choice behavior in their setting without such restrictions. In a similar vein, De Oliveira and
Lamba (2022) consider when a sequence of actions is consistent with some sequence of signals,
unobserved by the researcher, and Bayesian updating. My paper studies choices over objects with
samples of signals. In this environment, I characterize the empirical content of a broad class of
updating rules given an iid assumption on the signal structure.

2 Thought Experiment

In this thought experiment, Alice, a venture capitalist, has two potential projects she can invest
in. She has only enough funds to invest in one of them. Both projects promise that they can
succeed in creating an industry-leading technology. The technologies are from different fields.
Therefore, the success of one project is independent of the other. Ex-ante Alice believes both are
equally likely to succeed, and Alice only cares about whether they succeed. To make a better
decision, Alice reaches out to experts in these fields. Experts give out predictions for whether a
project will succeed. Alice can assume these experts are predicting independently without any
hidden agenda. Therefore, signals are iid conditional on the success or failure of the projects. For
project A1, 4 out of 5 experts predict it will succeed. For project B1, only one expert has gotten
back to Alice, but they predict success. How should Alice choose? A natural and justifiable choice
would be project A1, as a single expert’s prediction for B1 may be deemed insufficient. Now
consider Alice observes at time 2 some additional signals. Project A2 now has 40 out of 50 experts
predicting its success, and B2 now has 10 out of 10 experts predicting its success. Should Alice
now be willing to switch to investing in B2? If not, what about 400 out of 500 versus 100 out of
100? It may seem natural once the sample sizes grow enough, Alice should be comfortable with
investing in B2. Furthermore, should Alice be more confident in the correctness of the first choice
or the second? By correct, I mean not in selecting a successful project but having chosen the project
with the highest probability of success given the predictions. I suspect one may find it acceptable
to be more confident with the second choice. And introspection suggests that as the sample sizes
grow, both our willingness to focus on the sample proportion and our confidence increase.

If Alice did choose A1 initially and B2 later on, then her behavior is inconsistent with a large
and general class of models. In the following, I illustrate that a Bayesian EU DM cannot generate
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such behavior. The theory section shows it holds for a much broader class of DMs. Suppose Alice
believes that projects will succeed with probability p ∈ (0, 1); recall ex-ante Alice considers them
equally likely to succeed. Suppose when a project, A or B, does succeed; Alice believes each expert
has a probability ca for project A and cb for project B of correctly predicting success. When a project
does fail, this probability, which is now a false positive, is da for project A and db for project B. If
Alice is Bayesian, Alice will choose whichever project has a higher posterior probability of success
given the observed sample of opinions. Then one can derive the condition for Alice to prefer A1
over B1 in terms of the likelihoods from the condition on posteriors that

prob(A succeeds | 4 out of 5) > prob(B succeeds | 1 out of 1),

and because states are binary, the following regarding posterior ratios holds

prob(A succeeds | 4 out of 5)
prob(A fails | 4 out of 5) >

prob(B succeeds | 1 out of 1)
prob(B fails | 1 out of 1) .

The denominators of the Bayesian updating formula cancel out to obtain that

p

1− p

prob(4 out of 5 | A succeeds)
prob(4 out of 5 | A fails) >

p

1− p

prob(1 out of 1 | B succeeds)
prob(1 out of 1 | B fails) .

Canceling and rewriting in terms of signal likelihoods given the iid assumption gives

ca
4(1− ca)

da
4(1− da)

>
cb
db

.

And by a similar calculation, if Alice chooses to pick B2 over A2 after collecting more information
then it must be that the following holds

prob(A succeeds | 40 out of 50) < prob(B succeeds | 10 out of 10).

Which implies by an identical sequence of transformations that

ca
40(1− ca)

10

da
40(1− dd)10

<
cb

10

db
10 .

Note that the inequalities from the second decision are precisely that of the first taken to the
power of 10. Therefore, if Alice’s belief regarding the likelihoods, ca, cb, da, and db remained
constant in the two decisions, her pattern cannot be rationalized as that of a Bayesian DM.

Before proceeding, two complementary features of the choice process should be highlighted
for future sections. The first feature is that a sample with a small size is discounted potentially
because it is perceived as noisy, and when the sample size increases, this concern disappears.
This is precisely where confidence matters and where the iid assumption is violated. Under the
iid assumption, with known likelihoods, the signal likelihoods are fixed and independent of the
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observed sample. And, therefore, leaves no room for their interpretation to change. We see instead
that confidence increases in sample size. Further, the willingness to neglect the sample size occurs
when one is confident in having observed a sufficiently large sample. The second feature is that,
upon introspection and irrespective of the actual choices, one may realize that one was able to
make these choices without knowledge of the signal likelihoods. Instead, one may have compared
the sample characteristics. Taking this logic one step further, it suggests that one’s choices may not
be dependent on what one is told about signal likelihoods. I test the relevance of these features for
decision-making experimentally and find evidence in favor of such a choice process. I also show
theoretically that if the DM faces uncertainty regarding the likelihoods, then these findings are
rationalized.

3 Theory

My theoretical framework considers a DM who chooses between two objects. Objects are
assumed to be ex-ante identical and of binary quality, denoted by g and b for good and bad
qualities respectively. For each object, the DM believes it has a probability p of being good. If the
object chosen is of good quality, then she obtains a payoff of 1. If the object is bad, then she obtains
instead a payoff of 0. For each object, the DM observes a sample of signals. Each signal can take
on a finite set of types t ∈ T . A sample of signals is a T -dimensional vector with natural numbers
as entries. Denote an object’s sample by s = (s1, ... , sT ) ∈ NT

0 , where st denotes the number of
signals of type t in the object’s sample. For example, each object could be a project, and a sample
could be a set of predictions.

I study empirical content of models of updating and take the primitive of my framework to be
a preference relation ⪰ defined on NT

0 × NT
0 . Therefore, s1 ⪰ s2 means to choose an object with

sample s1 over another object with sample s2. This is taken to imply that the DM considers s1 to be
better evidence of an object being good than s2. I now describe mental representations of a wide
class of models of belief updating. I then offer their axiomatic characterization in terms of choice
behavior between objects with samples.

In models of updating, the DM’s belief regarding samples is based on her belief regarding
individual signal realizations. Her belief regarding signals is described by a pair of likelihoodsσg =

[σg,1, ..., σg,T ] and σb = [σb,1, ..., σb,T ]. Likelihoods σg and σb are her beliefs about the distribution
over signal types conditional on the object being good and bad, respectively. For example, σg,t
denotes the probability a signal is of type t conditional on the object being good. I assume only
that σg,t ∈ (0, 1) and σb,t ∈ (0, 1), a full support condition. This condition is made only for cosmetic
reasons for the statement of the theorem and can be relaxed. I highlight that this is a very weak
condition on beliefs as σs do not have to be correct, therefore allowing for model misspecification.
Furthermore, I do not impose that these must add up to one, thus allowing for incoherent beliefs.

Given σg and σb, the DM can compute using the independence condition, for every sample,

a likelihood ratio. For any sample s, its likelihood ratio is L(s | σg, σb) = p(s | g)
p(s | b) =

∏T
t=1 σ

st

g,t∏T
t=1 σ

st
b,t

. The
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DM uses an updating rule to update a posterior belief for each sample. I consider updating rules
which are strictly monotonic in the likelihood ratio. While this seems like a strong assumption, it
is satisfied by a wide range of non-Bayesian updating rules. See Appendix B for a more detailed
discussion.5

Finally, once the DM has obtained a posterior belief for each object given its sample, she chooses
the one with a higher posterior probability of being good. In this binary scenario, this amounts
to any representation of choice under risk that satisfies FOSD. Therefore, non-EU theories such
as rank-dependent EU or cumulative prospect theory are allowed. I note that often, a decision
theorist wants to distinguish between different theories, which necessitates a large state space. My
goal here is to investigate common behavioral implications of a general class of theories. Therefore,
I look at the binary state space where these theories have identical predictions.

If a DM chooses according to the above, I say they have a likelihood ratio representation.

Definition 1. A preference relation ⪰ has a likelihood ratio representation if there exist σg and σb such
that for any samples s1 and s2,

s1 ⪰ s2 if and only if L(s1 | σg, σb) ≥ L(s2 | σg, σb).

It turns out that such a representation has a simple axiomatization that is parallel to the EU
representation of choice under risk. I introduce first the mixture operation and then my axioms.

• Mixture: For α ∈ [0, 1], if αs1 ∈ NT
0 and (1− α)s2 ∈ NT

0 , then s1αs2 = αs1 + (1− α)s2.

Therefore s1αs2 denotes the sample that is obtained by adding α proportion of s1 to (1 − α)

proportion of s2. Because samples are vectors with natural numbers as entries, I restrict this
definition to whenever both proportions are themselves samples. Given this definition, I define
the axioms.

Axiom 1. (Separability). For all samples s1 and s2, if s1 ⪰ s2 then for any s3, s1 + s3 ⪰ s2 + s3.

Axiom 2. (Mixture Independence). For all samples s1 and s2, if s1 ⪰ s2 then ∀α ∈ (0, 1) and for any
s3, s1αs3 ⪰ s2αs3 whenever αs1, αs2, (1− α)s3 ∈ NT

0 .

Axiom 3. (Continuity). For all samples s1, s2 and s3, the sets {α | ∃κ such that ακs1, (1− α)κs2, κs3 ∈
NT
0 , and (κs1)α(κs2) ⪰ κs3} and {α | ∃κ such that ακs1, (1−α)κs2, κs3 ∈ NT

0 , and (κs1)α(κs2) ⪯ κs3}
are closed in Q ∩ [0, 1].

Separability links a DM’s preference over samples to the marginal effect of additional samples.
In particular, it says that if an object with sample s1 is chosen over another object with s2, then

5To highlight why it is an intuitive assumption, consider the following scenario. The DM initially chose an object
with sample s1 over another with sample s2. Then she learns that the signal-generating process is such that there is
an additional signal type that she did not anticipate existed. This unanticipated signal type did not occur in either s1
or s2. She also learns that this additional signal type is equally likely for both good and bad objects. Therefore, this
unanticipated and unobserved signal type is pure noise. Therefore, she should not change her choice. A violation of
this assumption would imply that there are scenarios like the above where she would change her choice.
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for any sample s3, the DM prefers an object with sample s1 + s3 to one with s2 + s3. Mixture
independence is stated as under risk, with the caveat that the parts being mixed must be themselves
samples as per the definition of the mixture operation. Finally, continuity is akin to the standard
mixture continuity axiom under risk. The only differences are again due to the discreteness of the
environment. First, as mixture proportion αs are rational numbers, the closure requirement is on
the rationals as a subspace of [0, 1]. Second, it is necessary to be able to multiply the sample sizes
by arbitrarily large κ to find all the rationals that satisfy the condition.

I now present the representation theorem. Theorem 1 links the axioms to the likelihood ratio
representation implied by models of updating and operationalizes it.

Theorem 1. The following are equivalent:

1. The relation ⪰ has a likelihood ratio representation.

2. The relation ⪰ is transitive, complete, separable, and continuous.

3. The relation ⪰ is transitive, complete, mixture independent, and continuous.

4. The relation ⪰ is such that there exists a set {ut}Tt=1, and for all s1 and s2 we have

s1 ⪰ s2 ⇔
T∑
t=1

uts
t
1 ≥

T∑
t=1

uts
t
2.

Proof: Appendix A.

Theorem 1 links a broad class of models of updating with their empirical implications via the
second statement. In particular, these models imply choices must satisfy separability. Therefore,
the behavior exhibited in the thought experiment cannot be accommodated by updating rules
that are strictly monotonic in the likelihood ratio, given that signals are perceived to be iid with
known likelihoods. The third statement establishes the equivalence of separability and mixture
independence. This gives a hint of the proof strategy. If the set of samples was on RT

0 , then 3) ⇔ 4)

is immediate by the Mixture Space Theorem (Herstein and Milnor, 1953), as 4) is a linear utility
representation. My proof proceeds by extending the domain of ⪰ to QT

0 × QT
0 , allowing signal

numbers to be rational numbers. This extension is carried out using the mixture operation. From
there a generalization of the Mixture Space Theorem can be applied (Shepherdson, 1980).

Theorem 1 implies that a wide class of models of updating imply choice behaviors that have
a linear utility representation. Therefore, these models predict indifference curves, drawn in the
space of samples, must be parallel straight lines. If the signals have binary types, like in the thought
experiment, then the space of samples can be illustrated in Figure 1. The x-axis and y-axis denote
the number of bad and good signals, respectively. Therefore, any sample is a point on the plane. For
graphical convenience, I showcase a choice pattern that is qualitatively identical but numerically
different from the thought experiment. In Figure 2, A1 = (3, 7), is initially chosen over B1 = (1, 4).
Then, the indifference curve through B1 must lie below A1. I can plot the horizontal boundary via
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Figure 1: Indifference Curves Compatible with Thought Experiment

the assumption that bad signals are negative in value. Similarly, the indifference curve through
B2 = (3, 12), must lie above A2 = (9, 21), and a vertical boundary can be drawn by assuming good
signals are positive in value. Note then the pattern of the thought experiment rules out parallel
straight lines as indifference curves and, therefore, is inconsistent with updating models with a
likelihood ratio representation. In my experiment, I collect precisely such indifference curves and
show that they are indeed not parallel straight lines but instead, rays that fan out as the thought
experiment suggests.

I test models of updating characterized by Theorem 1 in the actual experiment. I note how-
ever that the thought experiment conflicts with a wider class of models. In particular, Theorem
1 holds for models of updating which are strictly monotonic and continuous in the likelihood
ratio. Whereas separability and transitivity are enough to conflict with the thought experiment.
Therefore weakly monotonic updating rules, such as Coarse Bayesian Updating(Jakobsen, 2021),
are violated by the thought experiment even if they do not fall under Theorem 1. I show this in
Appendix B1. The table below summarizes known updating rules and their relationship with the
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actual experiment and the thought experiment.

Table 1: Updating Rules and Relation with Actual and Thought Experiments

Updating Rules Rejected By Literature
Actual Exp. Thought Exp.

Bayesian Updating Yes Yes Bayes and Price (1763)
Grether Updating Yes Yes Barron (2021); Coutts (2019); Grether (1980); Möbius et al. (2022)
Weighted Bayesian Yes Yes Epstein et al. (2010); Hagmann and Loewenstein (2017); Kovach (2021)
Divisible Updating Yes Yes Cripps (2018)
Coarse Bayesian No Yes Jakobsen (2021)
Confirmatory Bias Yes Yes Rabin and Schrag (1999)
Size/Proportion Regression No Yes Griffin and Tversky (1992)
Inertial Updating No No Dominiak et al. (2023)

3.1 Confidence Elicitation

In this subsection, I introduce a confidence elicitation mechanism. The reader may skip to
Section 4 where I show the experimental implementation of this mechanism. Additionally, my
presentation here is restricted to confidence elicitation as it pertains to inference from samples. I
generalize the framework and the mechanism for a wider class of choices in Appendix A2. I also
discuss some implementation intricacies in Appendix A2.

The thought experiment hints that confidence in inference may be relevant for choice. However,
according to earlier models of updating, the DM, given a sample, assigns an exact number to the
posterior probability of an object being good. Then, when choosing between two objects, the DM
knows with certainty which has a higher (subjective) probability of being good. These models
therefore leave no room for the DM to have uncertainty about which object has a higher probability
of being good. Therefore, to measure confidence and its relationship with choice, I first allow DMs
to possess uncertainty regarding posteriors. This allows me to define lack of confidence as not
knowing with certainty which object has a higher probability of being good. And I propose a
confidence elicitation mechanism based on this definition.

Consider a DM who chooses between two objects with samples s1 and s2 respectively. To
define confidence, I assume that the DM may be uncertain about the values of p(g|s1) and p(g|s2).
I consider two common representations of this type of uncertainty. First, the DM could have a
probability distribution P over values of p(g|s1) and p(g|s2). They then evaluate objects and their
second-order distributions using some decision rule, examples include expected utility, smooth
ambiguity (Klibanoff et al., 2005), as well second-order forms of non-EU theories such as Segal
(1990). Second, the DM may instead consider sets of probabilities Π1,Π2 as possible for posteriors
p(g|s1) and p(g|s2). They then evaluate objects using a suitable decision rule such as maxmin EU
(Gilboa and Schmeidler, 1989), or variational preferences (Maccheroni et al., 2006). For both types
of representations, I say the DM is fully confident in choosing an object with sample s1 over one with
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sample s2 if they believe with certainty that p(g|s1) ≥ p(g|s2). Formally, P (p(g|s1) ≥ p(g|s2)) = 1

and minΠ1 ≥ maxΠ2 for the first and second class of models, respectively. Full confidence implies
the DM assigns probability 1 to the object with sample s1 having a higher probability of being good.
Similarly, I say the DM lacks confidence when the above fails. My approach here is therefore general
and incentive compatibility of my mechanism holds for a wide range of theories of confidence.

Suppose the DM is fully confident, then she has no instrumental value in learning whether
p(g|s1) ≥ p(g|s2) is true as she already knows it. For any of the theories above, having full
confidence implies zero value of information. Therefore, strictly positive willingness to pay to
learn the correct action only occurs under lack of confidence. Using this channel, I consider the
following elicitation mechanism:

• The subject is asked to choose between two objects with samples s1, s2 and a number δ ∈ [0, 1].
Her payoff is determined as:

1. With probability δ2, they get a bad object.

2. With probability 1− δ, they get the object they chose.

3. With probability (1 − δ)δ, they learn the object with the highest probability of being
good, given s1 and s2, and can choose again.

Therefore, this mechanism gives the DM a chance to learn which object is statistically more likely
to be good at a cost. Any theory of confidence, second-order probabilities, or sets of probabilities,
assigns values V2 and V3 for the second and third options such that V2 ≤ V3. Note a choice of δ
yields a lottery over three outcomes: a bad object with value V1 < V2, an outcome with value V2,
and an outcome with outcome V3. Choosing δ = 0 yields a lottery with a guaranteed value of
V2. Therefore for any theory of risk over the uncertainty induced by δ that satisfies strict FOSD,
it must be that the DM chooses δ > 0 only if V3 > V2. If one assumes expected utility over the
uncertainty generated by δ and normalizes the value of a bad object to 0, one can solve for the
optimal δ∗ = 1

2
V3−V2
V2

. Therefore, choosing δ > 0 implies a strictly positive instrumental value of
information. Note that if the DM assigns P (p(g|s1) ≥ p(g|s2)) = 1 or minΠ1 ≥ maxΠ2 then under
any conventional updating rule for theories confidence, it must be that V2 = V3. Therefore, δ > 0

implies the DM lacks confidence.

Proposition 1. Suppose the DM’s attitude regarding the lottery induced by the mechanism satisfies strict
FOSD then δ > 0 only if the DM lacks confidence.
Proof: Appendix A2.

The presented mechanism requires the existence of an objectively correct choice that can be
credibly signaled. However, one can get around this by providing a signal that the DM considers
correlated with what they consider subjectively correct. For instance, in complex lottery choices,
the expected value, and in dictator games, the average of other players’ choices. If the non-
instrumental value of information can be ruled out, then a DM chooses to acquire the signal only
if they lack confidence and perceive the signal as informative.
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The reader may also worry about the complexity of the lottery induced by the mechanism, as
complexity has been shown to induce violations of FOSD. I note that this only makes the δ = 0

case more attractive. Therefore this concern does not change the fact that δ > 0 implies lack of
confidence.

I show in the next section an implementation that is simple to understand for subjects and
retains incentive compatibility. I also show in the experimental results section that the collected
measure is well correlated with an unincentivized measure.

4 Experimental Design

Overview. Subjects are told that there are 200 boxes, half of which are golden (good) and half
are wooden (bad). Boxes also contain 10 colored balls in them. These balls are colored red or
blue and the composition depends on the box’s type. The relationship between color composition
and box types differs across three between-subject treatments. Subjects are tasked with choosing
between two boxes and go through three sets of choice tasks in random order. Subjects choose
without knowing the boxes’ types. But they may observe a sample of balls drawn with replace-
ments from the boxes. After each choice, I elicit a measure of confidence. Subjects make, over the
three sets of choice tasks, 16 choices in total. After the 16 choices, they are given the payoff-relevant
choice, and depending on their measure of confidence, they may also learn the statistically correct
choice and can choose again. After this potential new choice, they learn the type of box that they
chose and their earning, and the experiment concludes.

Treatments. Subjects faced one of three treatments, which differed in the way the composition
of balls in the box was determined. Two of the treatments have the color compositions fully
determined by the box’s type. In these treatments, as balls are drawn with replacements, they
are iid conditional on the box’s type. A third treatment involves uncertainty regarding the box’s
composition as it is not fully determined by the box’s type. Samples in this third treatment are
therefore not iid conditional on the box’s type.

1. Symmetric Accuracy (iid given box type):

• Golden Box: 7 red balls and 3 blue balls.

• Wooden Box: 7 red balls and 3 blue balls.

2. Asymmetric Accuracy (iid given box type):

• Golden Box: 8 red balls and 2 blue balls.

• Wooden Box: 6 red balls and 4 blue balls.

3. Correlated Accuracy (non-iid given box type):
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• Golden Box: 4 red balls and 6 random balls, each of which is equally likely to be red or
blue, determined independently.

• Wooden Box: 4 blue balls and 6 random balls, each of which is equally likely to be red
or blue, determined independently.

Note for all these cases, a red ball is a good signal while a blue ball is a bad signal.

Choice Tasks. Each subject sees three sets of choices in random order. Two of the three sets
of choices are called comparative choice. These involve choosing between boxes, for each of which
the subject sees a sample of signals. These two sets differ in the number of total signals in each
sample. A third set of choices is called belief updating. For this task, subjects choose between one
box with a fixed chance of being golden and another with a sample of signals. From the two
comparative choice tasks, I elicit 10 indifference curves. And from the belief updating tasks, I elicit
4 indifference curves. All elicitations are done via a multiple-choice list where I elicit the subject’s
switching point. See Figure 2 below for an example.

Comparative Choice Tasks. The choices from the two comparative choice tasks are as follows.
Subjects are told that one box already drew a specific number of red balls out of 4. The other box
has yet to draw any balls and subjects can choose based on the realized draw. For example, they
can choose the first box whenever the second box draws less than 6 out of 10 red balls. The two
sets of choice tasks differ in the number of balls drawn from this second box, which is either 10 or
25. I now elaborate on the specifics of the two tasks. Denote by (x, n) a box that drew x red balls
out of n.

Size 4 vs Size 10: One set of ICs is elicited by asking for each y ∈ {0, 1, 2, 3, 4} the number xy of
red balls such that (xy + 1, 10) ⪰ (y, 4) ⪰ (xy, 10). Therefore xy + 1 is the smallest number of red
balls out of 10 that the subject deems to be better evidence of a golden box than y red balls out of
4. This gives me a bound for 5 indifference curves, and I use xy + 0.5 as in the indifference point
in my estimation whenever xy ̸= 0 or xy ̸= 10, in which case I use xy = 0 and xy = 10. In other
words, I take (xy + 0.5, 10) ∼ (y, 4) to hold whenever xy /∈ {0, 10}.

Size 4 vs Size 25: One set of ICs is elicited by asking for each y ∈ {0, 1, 2, 3, 4} the number xy
such that (xy + 1, 25) ⪰ (y, 4) ⪰ (xy, 25). This gives me a bound for 5 indifference curves, one
for each of (y, 4). I use xy + 0.5 as in the indifference point in my estimation whenever xy ̸= 0 or
xy ̸= 25, in which case I use xy = 0 and xy = 25. In other words, I take (xy + 0.5, 10) ∼ (y, 4) to
hold whenever xy /∈ {0, 25}.

Recall that red balls are good signals in every treatment. Therefore monotonicity implies
(y, n) ⪰ (y − 1, n), which implies xy ≥ xy−1. I say a subject violates monotonicity if they display
xy−1 > xy for any of the comparative tasks.

Belief Updating Task. In this task, subjects face one box with a fixed chance of being golden
and another box that has yet to draw any signal. As in the previous tasks, she can condition
her choice on the realized draw. Denote by ℓy a box with y probability of being golden with
y ∈ {0.25, 0.75}. I also elicit through 6 choice tasks xys such that (x4y + 1, 4) ⪰ ℓy ⪰ (x4y, 4),
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Figure 2: Example of MPL Choice
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(x10y + 1, 10) ⪰ ℓy ⪰ (x10y , 10) and (x25y + 1, 25) ⪰ ℓy ⪰ (x25y , 25). This gives me 4 indifference
curves revealed through probabilistic equivalents. As before, I take the midpoint to be the point of
indifference. This gives (x4y + 0.5, 4) ∼ (x10y + 0.5, 10) ∼ (x25y + 0.5, 25) whenever these midpoints
are well defined, I use the extreme points of 0, 4, 10, 25 if xy ever equals these values. The goal is
to test whether the choice patterns are unique to comparative tasks. In comparative choices, the
subject perhaps naturally compares the proportion of red balls. Therefore I also test models of
updating via a direct belief updating task which is more standard in the literature.

In all these tasks, I elicit an interval of the form (xy+1, n) ⪰ (y, 4) ⪰ (xy, n) or (xy+1, n) ⪰ ℓy ⪰
(xy, n). This is done via an incentive-compatible multiple choice list mechanism where the sub-
ject chooses a switching point xy, holding y and ℓy fixed. For details, see Figure 2 and Appendix D2.

Confidence Elicitation. Additionally, after each choice, the subject is given two options. I
implement a simple form of my confidence elicitation mechanism. In particular, the subject is told
that there is a statistically correct choice, which maximizes the probability of choosing a golden
box. After each of the above choices, they are given two options:

1. Always use the current choice.

2. 50% chance to learn the correct choice and can choose again, 49% chance to use the current
choice, 1% chance of earning nothing.

Note that subjects are not guaranteed to learn the correct choice. Therefore, they are still
incentivized, even if they choose option 2, to give what they believe is the correct choice. Choosing
option 2 is a sufficient condition for the subject to perceive value in learning the correct choice.
While it is not a necessary condition, it allows distinguishing between subjects who perceive a high
enough value in learning the correct choice versus those who do not. While the implementation
differs from the formal presentation, choosing option 2 is still a sufficient condition for lack of
confidence. I show this in Appendix C. I note finally that this learning occurs at the end of the
experiment, therefore there is no risk of contamination from learning.

I also opt to inform the subjects of the statistically correct choice instead of replacing their
choice. This is important as there may be subjects who wish to learn the statistically correct choice
but not implement it. For instance, they may use it as a reference and then bias their own choice
accordingly. This allows for a stronger test of lack of confidence.

I also collect, at the end of the study, an unincentivized, binary measure. Subjects are asked to
report whether they believe they were close to the correct choice for most of the questions or not.

Randomization and Order. Subjects are randomly assigned one of three treatments. Within
the treatments, they are assigned a random order of blocks. The blocks are the two comparative
choice tasks and the belief updating task. Within the blocks, to help with the consistency of choices,
subjects always start by evaluating the box with the lowest value and each following box is the
immediate next highest in value. For instance, in the Base 4 vs Base 10 task, they evaluate first a box
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that has drawn 0 red balls out of 4, then 1 red ball. This continues with higher numbers and finishes
with a box that has drawn 4 out of 4 red balls. Note, therefore, that it is straightforward to respect
monotonicity as a subject only needs to remember their last choice. In the belief updating task, they
evaluate n = 4 first, followed by n = 10 and n = 25. Subjects are informed that one of their choices
was randomly selected at the start of the study for payment. Therefore, it is independent of their
choices in the experiment. This theoretically eliminates hedging possibilities across tasks. Finally,
the outcome of the confidence elicitation mechanism is only shown at the end of the experiment
once the subject sees the task chosen for payment. This was explicitly chosen over revealing the
mechanism’s outcome after each task. This eliminates the mental burden of potentially having
to learn and change their choices for many tasks, but more importantly, it prevents learning and
contamination for future questions.

5 Experimental Results

Background. I collected responses from 400 Prolific subjects. Subjects were paid $2.5 USD for
completing the study, with a chance to earn a bonus payment of $5. The median completion time
was 17 minutes, and around 60% of the subjects earned a bonus payment. Subjects were screened
and had to pass a comprehension task. To participate, subjects needed an approval rate between
97%-99%, to have completed at least 100 studies, and to reside in the US. In the comprehension
task, they are explicitly taught the monotonicity condition (Section 4). Subjects can only start
the actual tasks after demonstrating they understand the monotonicity condition. The study was
pre-registered on Aspredicted.org.6

Variables and Measures. I focus on the indifference curves (ICs) and first study whether they
are parallel straight lines in the aggregate and whether they differ by treatment. I then consider
individual choices via three measures. The first measure quantifies whether an individual’s ICs
are parallel straight lines. For each indifference curve, I compute its angle relative to the x-axis.
This yields 10 angles, and I can compute, for each individual, the standard deviation of the angles
of their ICs. This should be close to 0 for straight parallel lines. Therefore, the larger this is, the
less parallel the ICs must be. The second measure captures for each choice whether the subject
chose according to the proportion of red balls (good signals) and neglected the sample size. For
each choice, the subject chooses the minimal xny , n ∈ {10, 25}, such that (xny , n) ⪰ (y, 4), for
each y ∈ {0, 1, 2, 3, 4}. I say that the subject’s choice is consistent with a sample size neglect if
|x

n
y

n − y
4 | ≤ 0.05. This implies that the subject’s choice is well predicted by the sample proportion.

Figure 3 below illustrates the type of ICs that would qualify. Note this is a demanding definition.
For example, when n = 10 and y = 2, then the subject needs to pick exactly xny = 5. Finally, for
each choice, I collect a binary measure of confidence, as outlined in the previous section.

6Please see here for pre-registration details.
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Figure 3: ICs consistent with Sample Size Neglect

Analysis Summary. I first study the aggregate ICs and show they are not parallel and not
influenced by the treatment. Then, I perform an individual analysis via the standard deviation of
angles of ICs and reject separability for an overwhelming majority of subjects. Then, I investigate
how these individual measures relate to each other. Building on the intuition from the thought
experiment, I show first violations of separability can be accounted for via sample size neglect.
Then I turn to my measure of confidence. I first corroborate its validity with the unincentivized
measure. I show sample size neglect is positively associated with higher confidence. All the above
are conducted via the comparative comparison tasks. I present at the end the ICs induced from
the belief updating tasks and I show the same pattern emerges. As pre-registered, I will present
results for the full sample as well as a sub-sample of subjects who did not violate the monotonicity
condition. Non-violation is equivalent to having non-crossing ICs. In my data, 37% of subjects
have 0 IC crossings, and they constitute this sub-sample. The theoretical maximum number of
crossings is 8, and only 13% of subjects have more or equal to 4 crossings. I give some summary
statistics of these variables in Table 2.
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Table 2: Summary Statistics

Pooled Symmetric Asymmetric Correlated

Full Sub Full Sub Full Sub Full Sub

Standard Deviation of IC Angles 26.7 28.1 26.9 28.0 26.2 28.1 27.0 28.2
Sample Size Neglect (out of 10) 3.9 6.1 3.7 5.9 3.8 5.7 4.3 6.4
Opt to Learn (out of 10) 2.5 1.9 2.2 1.9 2.5 1.6 2.7 2.2
N 400 147 140 44 128 43 132 60

The summary statistics show a few trends. On average, the subjects have high standard devia-
tions for the angles of their ICs. On average, their ICs are not parallel straight lines. The average
subject display choices consistent with sample size neglect 3.9 times out of 10. The sub-sample
subjects display a much higher rate of sample size neglect, with 6 times out of 10 choices on average.
I also find that the sub-sample is less likely to opt to learn and, therefore, more confident in their
choices. Finally, treatment differences are not statistically significant except subjects are more likely
to opt to learn in the correlated treatment compared to the symmetric treatment for the full sample.

Aggregate ICs. I plot in Figures 4a, 4b, and 4c below the ICs of the three treatments for a
Bayesian EU subject, the full sample, and the sub-sample, respectively. The aggregate ICs are not
parallel for either the full or sub-samples. I can test whether the crossing points on the N = 10

and N = 25 lines are different between treatments. There are 3 treatments, with 10 such points, so
this gives 30 tests. In the full sample, only 5 tests yield statistically significant differences between
treatments at p < 0.1. For the sub-sample, only 6 tests yielded statistically significant differences.
There are two takeaways. First, the aggregate ICs are not parallel straight lines. Therefore, sug-
gesting that the models being tested do not account for aggregate behavior well. Second, subjects
are essentially fully insensitive to the treatments This suggests that they are ignoring the likelihood
and relying mostly on sample statistics such as the proportion of red balls and the total sample size.
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Figure 4a: Bayesian EU IC

Figure 4b: Full Sample IC

23



Figure 4c: Sub-Sample IC

Standard Deviation of IC angles. Below in Figures 5a and 5b, I show the distribution of
standard deviations for the full sample and the sub-sample, respectively. In the full sample, only
5% and 20% of subjects have ICs with angles with a standard deviation below 10 and 20 degrees,
respectively. In the sub-sample, only 6% and 17% of subjects have ICs with angles with a standard
deviation below 10 and 20 degrees, respectively. Therefore, I conclude that the models are not
only rejected at the aggregate level but also at the individual level for almost all subjects. Using
Kolmogorov-Smirnov tests, I investigate whether the distributions of standard deviations differ by
treatment. I cannot reject the null for the full sample and sub-sample at any significance value
p ≤ 0.10. Finally, the spike at ≈ 33 is due to subjects who display sample size neglect for almost
every choice.

Sample Size Neglect and non-Parallelism. As per my pre-registration, I explore the correlation
between the standard deviation of angles of ICs and sample size neglect. The question I ask is: do
people display non-parallel ICs because they are noisy, confused, and potentially randomizing, or
because they display sample size neglect, which is a systematic choice? To explore this, I regress
the standard deviation of angles, STDi on the proportion of times, out of the 10 choices, a subject
displays sample size neglect, Pi. Finally, Xi is a set of controls including sex, ethnicity, time taken
(in the whole study), age as well as treatment dummies. I estimate regression (1) and the results
are presented in Table 3. Regressions with treatment interaction terms can be found in Appendix
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Figure 5a: Full Sample STD of IC Angles Figure 5b: Sub-Sample STD of IC Angles

Table 3: Non-Parallel ICs and Sample Size Neglect

STD of Angles of ICs - STDi

(1) (2) (3) (4)

Pi 11.6*** 11.9*** 19.9*** 19.9***

(0.94) (1.02) (1.8) (1.9)

Controls/Treat.Dummy No Yes No Yes
Full/Sub-Sample Full Full Sub Sub
R2 0.19 0.22 0.47 0.48
N 400 386 147 141

* p < 0.10, ** p < 0.05, *** p < 0.01
Note: Robust standard errors in parentheses

C.
STDi = β0 + β1Pi + λXi + ϵi (1)

The results of the regression are in line with the aggregate ICs plotted earlier. There is a strong
correlation between sample size neglect and non-parallel ICs, which is stronger for the sub-sample.
On average, a DM who always displays sample size neglect has a standard deviation that is 12
and 20 degrees higher than a person who never displays sample size neglect for the full sample
and sub-sample, respectively. Furthermore, the R2s are high at 0.2 and 0.5 for the full sample and
sub-sample, respectively. I conclude that a significant portion of non-parallelism and violation of
models of updating is due to sample size neglect.

Confidence and Sample Size Neglect. I first perform a sanity check by verifying that the
collected binary measure of confidence through my elicitation mechanism is highly correlated
with the unincentivized self-reported confidence measure. Denote by Oi the percentage of times
(out of 10) that a subject i opts to learn, so the higher this is, the less confident a subject is. And
denote by Ci the binary self-reported measure. This self-reported measure is 1 if the subject
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Table 4: Self-Reported and Elicited Confidence

Self-Reported Confidence - Ci

(1) (2) (3) (4)

Oi −0.26*** −0.25*** −0.46*** −0.45***

(0.07) (0.07) (0.12) (0.12)

Controls/Treat.Dummy No Yes No Yes
Full/Sub-Sample Full Full Sub Sub
N 400 386 147 141

* p < 0.10, ** p < 0.05, *** p < 0.01
Note: Robust standard errors in parentheses

reports believing in having chosen approximately correctly for most tasks, and is 0 otherwise.
Finally, denote Xi a set of controls as well as treatment dummies. I run the following regression
(2) as a linear probability model. The regression results are in Table 4. A subject who always opts
to learn is, on average, 25% and 45% less likely to report that they are confident than someone who
always opts out, in the full sample and sub-sample, respectively. Note that only 52% and 64% of
subjects self-report to be confident in the full and sub-samples, respectively. Hence, the effects are
significant both in magnitude and in statistical significance, as Table 4 shows. See Appendix C for
logit and probit results, which are consistent.

Ci = β0 + β1Oi + λXi + ϵi (2)

I then ask whether sample size neglect could be due to subjects not knowing how to choose and
deferring their choices to the sample proportion. Figures 6a and 6b show that whenever a choice
displays sample size neglect, the subject is much less likely to opt to learn for that choice. The effect
is stronger for the larger samples (25) and for the sub-sample. For these choices, not displaying
sample size neglect implies that the subject is 2.4 times more likely to opt to learn. This suggests
that sample size neglect is not due to confusion as subjects who display it are more confident in
their choices.
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Figure 6a: Full Sample Confidence and Sample Size Neglect

Figure 6b: Sub-Sample Confidence and Sample Size Neglect

I denote choices by d and I set od = 1 if the subject opts to learn for that choice and od = 0

otherwise. Similarly, I set pd = 1 if the choice d exhibits sample size neglect and pd = 0 if it does
not. Finally, Xi is a set of controls, including sex, ethnicity, time taken (in the whole study), age,
and treatment dummies. To test whether sample neglect is related to lack of confidence, I consider
the following specification (3). Table 5 presents the results for a linear probability model. Similar
results are found for a logit and probit model. I also run the regression, as per my pre-registration,
with interaction terms and found similar results. See Appendix C for these additional regressions.

od = β0 + β1pd + λXi + ϵd (3)

In both the full sample and the sub-sample, if the subject’s choice displays sample size neglect,
then they are around 10% less likely to opt to learn. Note this is large as the average probabilities of
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Table 5: Sample Size Neglect and Confidence

Opting to learn od

(1) (2) (3) (4)

sample size neglect, pd −0.10*** −0.10*** −0.12*** −0.11***

(0.013) (0.014) (0.022) (0.026)

Controls/Treat.Dummy No Yes No Yes
Full/Sub-Sample Full Full Sub Sub
N 4000 3860 1470 1410

* p < 0.10, ** p < 0.05, *** p < 0.01
Note: Robust standard errors in parentheses

opting to learn are 25% and 19% for the full and sub-samples, respectively. I conclude that sample
size neglect is not due to a lack of confidence or noisy choices. On the contrary, a willingness
to neglect the sample size and refer solely to sample proportions is associated with the subject
being more confident. This is consistent with the intuition from the thought experiment. Section
6 provides a model that rationalizes this finding.

Belief Updating Tasks. The reader might wonder whether the comparativeness of the tasks
pushes subjects to compare sample characteristics and ignore the signal likelihoods. To explore
this possibility, I use the belief updating tasks to construct 4 indifference curves, presented below
in Figures 7a and 7b. The results are qualitatively similar, indifference curves still fan out, and
further, the choices again do not vary by treatment in any significant manner.

Figure 7a: Full Sample IC - Belief Updating Figure 7a: Sub-Sample IC - Belief Updating
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Summary of Experimental Findings. Conventional models of updating are overwhelmingly
rejected. Subjects are not sensitive to the signal structure; I show that this is not driven by
confusion. Rather, subjects intentionally choose by considering the sample characteristics. Many
subjects display a sample size neglect bias. My confidence elicitation mechanism, which correlates
well with an unincentivized measure, shows that sample size neglect bias is positively correlated
with confidence.

6 Likelihood Uncertainty and Signal Correlation

In this section, I discuss a natural class of belief about the signal-generating process that would
accommodate the behavior of the thought experiment. Furthermore, I show that under this belief,
it is asymptotically optimal to display sample size neglect.

Let us first reconsider the thought experiment. Recall the venture capitalist first elicited pre-
dictions from only one expert about project B, and this expert predicted success. Now, suppose
they are to guess how likely an expert is to correctly predict success for project B. Mathematically,
suppose they were asked to guess ℓ1 = p(predicts success|B succeeds). Having only observed one
signal, this is a difficult question to answer, and I doubt many readers would be willing to answer
a high ℓ1. However, suppose they now have observed 10 out of 10 experts predicting success.
And recall they picked B over A, so they must believe that project B will succeed with a higher
probability than A. Then, if asked again to guess ℓ2 = p(predicts success|B succeeds), they must
believe that the conditional term of "B succeeds" has a non-insignificant probability of being true,
therefore, the empirical frequency observed, 10 out of 10, is at least somewhat indicative of the
actual likelihood. This should incline a guess of ℓ2 > ℓ1. Note that the belief regarding the signal-
generating process changes as one observes more signals. In other words, how one interprets
signals is dependent on the sample one observes, so signals are thought to be correlated and not
independent. In particular, there is some other uncertainty regarding the likelihood of signals,
such as how hard it is to correctly predict success. These uncertainties are not fully known or
determined by the underlying state, but as the sample size grows, the DM gradually learns about
these and grows more confident.

Consider a simple binary state and binary signal type model. The state is good or bad, and
signals are also good or bad. Therefore, samples are of the form si = (si,g, si,b), where the first entry
denotes the number of good signals and the second entry denotes the number of bad signals. Let σg
and σb denote the probability of a good signal conditional on the good and bad state, respectively.
Similarly, 1 − σg and 1 − σb denote the probability of a bad signal conditional on a good and bad
state, respectively. The DM assumes that σg and σb are drawn from convex CDFs Fg and Fb with
support on [0, 1]. Therefore, the DM faces some uncertainty regarding the signal likelihood and
believes the likelihoods to be distributed by Fg and Fb. Timing is important; the realization of
σg and σb are determined first by Fg and Fb, and then the signals are drawn according to σg and
σb. If different σg and σb are drawn for each signal, then there is no learning possible about this
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likelihood uncertainty, unlike as shown in the thought experiment. This case would then not be
able to generate the behavior exhibited in the thought experiment for a Bayesian.

I illustrate first via a concrete example that relaxing the assumption that likelihoods are known
accommodates the thought experiment.

Example. Suppose the venture capitalist does not know how good experts are at predicting
different projects. This could be due to them not being an expert and unable to account for the
difficulty of predicting accurately. Suppose the likelihoods for both predictions of A and B are
randomly determined by σg ∼ Fg and σb ∼ Fb with Fg = U [0.5, 1] and Fb = U [0.3, 0.8]. That
is, they believe that if a project will succeed, then experts have at least a 50% chance of correctly
predicting it. However, if a project cannot succeed, then they believe experts may be fooled, and
potentially 80% could predict success. Then, the likelihood ratios of the two decisions display
precisely the intuitive switching pattern as follows

p(4 out of 5 | A succeeds)
p(4 out of 5 | A fails) =

∫ 1
0.5 σ

4
g(1− σg)dσg∫ 0.8

0.3 σ4
b (1− σb)dσb

>

∫ 1
0.5 σgdσg∫ 0.8
0.3 σbdσb

=
p(1 out of 1 | B succeeds)

p(1 out of 1 | B fails) ,

p(40 out of 50 | A succeeds)
p(40 out of 50 | A fails) =

∫ 1
0.5 σ

40
g (1− σg)

10dσg∫ 0.8
0.3 σ40

b (1− σb)10dσb
<

∫ 1
0.5 σ

10
g dσg∫ 0.8

0.3 σ10
b dσb

=
p(10 out of 10 | B succeeds)

p(10 out of 10 | B fails) .

Note that the sign switches precisely because they now have learned more about the likelihoods
and are more confident, therefore, in what signals imply. Suppose the venture capitalist were to
be asked the probability she believes each of these choices to be correct. Then, she would assign
close to 1 to the second choice and strictly less to the first choice.

For the rest of the discussion, I assume that ⪰B,F is the preference relation generated by a
Bayesian EU DM who faces uncertainty F = (Fg, Fb). I also assume that ⪰B,F additionally satisfies
a weak monotonicity assumption. Monotonicity states that the DM recognizes good signals as
good news and bad signals as bad news. I show that sample size neglect is asymptotically optimal
irrespective of F given this assumption. Therefore, a DM who does not know what to believe
about Fg and Fb but knows that monotonicity is satisfied by a Bayesian can do just as well as a
Bayesian who knows Fg and Fb asymptotically by neglecting the sample size. In the following, I
define first monotonicity and sample size neglect.

Definition 2. A relation ⪰ is monotonic if

∀sg, sb ∈ N0, (sg, sb) ⪰B,F (sg − 1, sb + 1).

Recall that objects are binary-valued, and utility can be normalized to 1 and 0. Denote by
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θ1, θ2 ∈ {g, b} the object’s types. Therefore, when given two objects with samples s1, s2, we have

UB,F (s1, s2) = max {p(θ1 = g | s1, F ), p(θ2 = g | s2, F )} ,

which denotes the expected utility of the Bayesian EU DM who faces uncertainty F regarding
likelihoods. We define the expected utility of a DM who uses the sample size neglect choice and
faces F as follows:

USSN (s1, s2) =


p(θ1 = g | s1, F ), if s1,g

s1,g+s1,b
>

s2,g
s2,g+s2,b

,

p(θ2 = g | s2, F ), if s1,g
s1,g+s1,b

<
s2,g

s2,g+s2,b
,

1
2 [p(θ2 = g | s2, F ) + p(θ1 = g | s1, F )], if s1,g

s1,g+s1,b
=

s2,g
s2,g+s2,b

.

Given that UB,F maximizes the choice’s expected utility and USNN ignores the key statistical
information provided from F and s1, s2, we have that UB,F (s1, s2) ≥ USSN (s1, s2) in general. But
the next result shows that asymptotically, the differences disappear.

Proposition 2. If ⪰B,F is monotonic, then ∀s1, s2 ∈ N2
0, lim

κ→∞
UB,F (κs1, κs2)− USSN (κs1, κs2) = 0.

This proposition provides an explanation for why sample sizes are often ignored and why
subjects can remain confident while ignoring sample sizes. Furthermore, it is consistent with our
increasing comfort in ignoring the sample size and focusing on the proportion of good signals as
sample sizes increase. The proof is contained in Appendix A, where I also show that the result is
not restricted to binary signal types.

7 Conclusion

In this paper, I consider a DM who chooses between objects which are associated with samples.
While this is a natural setting, I deviate from the literature on belief updating to study the empirical
content of updating models in the context of samples. I theoretically characterize the empirical
content of a wide class of models. Then, I illustrate a natural choice pattern which all these
models fail to rationalize. These models are then tested and thoroughly rejected in a controlled
experimental setting. The thought experiment suggests that the main discrepancy lies in that these
models assume the DM is fully confident in how to interpret signals. Instead, subjects behave as
if using a sample size neglect heuristic, which I show is asymptotically optimal whenever there
is uncertainty regarding signal interpretation. Using a novel incentive-compatible confidence
elicitation mechanism, I show that sample size neglect is positively correlated with confidence. This
is predicted by a model of signal uncertainty and suggested intuitively by the thought experiment.
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Appendix

A Proofs

A.1 Theorem 1

Throughout, I denote samples by x, y, z instead of s1, s2, s3 to save a subscript. I denote by πx
t

the percent of signals of type t in x as well as Nx the total sample size of x. Similarly,
1) ⇒ 4). Pick any values of {σg,t, σb,t}t∈T . Then note for any samples x and y, the DM always

strictly prefers the one with a higher posterior. Assume wlog the updating rule is strictly increasing
in the likelihood ratio. A sample with a higher likelihood ratio has a greater or equal posterior.
Therefore, the DM always strictly prefers a sample with a higher likelihood ratio.

Then we see that

L(x) =


T∏
t=1

σ
πx
t

g,t

T∏
t=1

σ
πx
t

b,t


Nx

and L(y) =


T∏
t=1

σ
πy
t

g,t

T∏
t=1

σ
πy
t

b,t


Ny

.

This then gives

L(x) > L(y) if and only if Nx

T∑
t=1

πx
t log(

σg,t
σb,t

) > Ny

T∑
t=1

πy
t log(

σg,t
σb,t

).

Then choosing ut = log(
σg,t

σb,t
) shows that 1) ⇒ 4). If the updating rule is strictly decreasing, then

multiplying the uts by a negative coefficient gives the representation.
The case when all uts are zero is trivial by picking a completely uninformative information

structure. Now suppose ⪰ is such that ∃{ut} such that

x ⪰ y if and only ifNx

T∑
t=1

πx
t ut ⪰ Ny

T∑
t=1

πy
t ut.

Then from above, we simply need to find λts and α > 0 such that the condition below holds.
Then we can set σg,t = σb,t exp(αut).

∀t, σb,t exp(αut) ∈ (0, 1) and σb,t ∈ (0, 1).

Note that this is simply a matter of scaling, as exp(αut) is always positive. So we can always
find a set of σb,ts small enough.

Now consider 2)/3) and 4), first 4) ⇒ 2)/3) is immediate by the functional form.
I start by showing that 3) ⇒ 4). Denote by Q the set of non-negative rationals. Then, QT is the

set of samples with rational numbers of signals of each type. I define an extension of ⪰ on QT ,
denoted by ⪰∗. Note that QT is what Shepherdson (1980) calls a multiplier space under mixtures
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with ratios in QT . This is because, for any two rationals, their mixture by a ratio α that is itself a
rational will be another rational. Shepherdson (1980) shows that ⪰∗ over such a space has a linear
cardinal representation if and only if it satisfies three properties:

• Completeness+Transitivity.

• Closure of {α | xαy ⪰∗ z} and {α | xαy ⪯∗ z} in Q (as a subspace of [0, 1]).

• Mixture: x ⪰∗ y implies xαz ⪰∗ xαy.

Therefore, if we can extend ⪰ to ⪰∗ while giving it these properties, then we know there is a linear
representation for ⪰.

Pick any x, y ∈ QT , then they can be rewritten as (x1
d , ...xT

d ) and (y1d , ...,
yT
d ) where x̃ =

(x1, .., xT ) ∈ NT
0 and ỹ = (y1, .., yT ) ∈ NT

0 . I say x ⪰∗ y if and only if x̃ ⪰ ỹ. Note that there is more
than one way to rewrite it, but by mixture, these must agree under ⪰. Suppose x = x̃ · 1

d = x · 1
c

and y = ỹ · 1
d = y · 1

c . Let d > c, then if x ⪰ y, by mixture, x c
d0 ⪰ y c

d0, which is equivalent to x̃ ⪰ ỹ.
Note ⪰∗ is complete by definition. For any two vectors, x and y, with rational numbers as

entries, suffice to multiply them by ΠT
t=1xtyt as the denominator to obtain x̃, ỹ ∈ NT

0 .
Consider transitivity of a triples, x, y, z samples. Then rewrite them as x = x̃

d , y = ỹ
d , and z = z̃

d

where x̃, ỹ, z̃ ∈ NT
0 . Then suppose x ⪰∗ y, then x̃ ⪰ ỹ and similarly ỹ ⪰ z̃. So by transitivity of ⪰,

x̃ ⪰ z̃ which implies x ⪰∗ z.
Mixture is exactly like transitivity. Pick any x, y, α, z, we can rewrite all the terms as x̃, ỹ, z̃.

Then if x ⪰∗ y, we have x̃ ⪰ ỹ. Which implies x̃αz̃ ⪰ ỹαz̃, which implies xαz ⪰∗ yαz.
Closure is directly given by the axiom. Note that{α |xαy ⪰∗ z} is the same as{α | ∀κ, (κx)α(κy) ⪰

κz}. This concludes that ⪰ has an extension ⪰∗, which has a linear utility form. Which implies ⪰
itself has such a representation. This concludes 3) ⇒ 4).

Note that, unlike the EU result, the representation is NOT preserved under affine transforma-
tions, only scalar ones. However, that is not a problem, as the statement, in its usual form, says if
u and u′ represent the same preference, then u = αu′ + β, which is still true in our case. Note this
is not an if and only if claim.

I now show 2) ⇒ 3) by showing separability implies mixture. Suppose we have x ⪰ y, then
we want to show xαz ⪰ yαz. Note firstly that separability implies that x ⪰ y and x′ ⪰ y′ then
x+ x′ ⪰ y + y′. This is done by three applications of separability plus transitivity of ⪰.

For mixture to be well defined, we have αx, αy are samples of form (αx1, ..., αxt), (αy1, ..., αyt)

integers. Note then that the smallest α = 1
N , which can work for both to be well defined, is when

N is the largest common denominator of xts and yts. Similarly, any α that can work is of the form
k
N . Note then suffice to show that x ⪰ y implies αx ⪰ αy, then using separability with (1 − α)z

yields mixture. First note that 1
N x ⪰ 1

N y; if not, then we can apply separability on both sides and
obtain x ≺ y. Then this gives for any k

N we have k
N x ⪰ k

N y as desired.
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A.2 Proposition 1

A.2.1 Confidence Elicitation: General Framework

I consider a subject who must choose from a set of actions a ∈ A. The subject has a payoff
function π : A× A → Z. The set Z denotes the potential consequences of her choices. It could be
objective, e.g., monetary values, or subjective, e.g., subjective belief about the probability of win-
ning, and I assume there is an outcome zw that is understood by all subjects to be the worst one.
π(a, a∗) denotes the consequence should the subject choose a when a∗ is the correct choice. Correct
can be objective, as in the case of belief updating, or it could be subjective as in the case of dictator
games or lottery choices. Finally, I denote by s ∈ S a set of signal realizations. The subject may
believe signals are correlated to the correct action a∗. I assume that π(a, a∗) is uniquely maximized
at a = a∗ for each a∗. This implies that not knowing the correct choice is payoff-relevant. I note
that these signals do not provide any value of information regarding uncertainties intrinsic to the
experiment (such as lottery outcomes). The only instrumental value they can provide is in terms
of the correctness of action and do not resolve any intrinsic uncertainties. One example could be
S = A, and the signal perfectly reveals the correct action. The subject has some belief about the
correct choice a∗. I say a subject is confident in knowing a∗ whenever they assign probability 1 to
some a∗ ∈ A. If a subject is confident, then nothing can change her belief about a∗. Therefore, a
confident subject should assign zero instrumental value to any signal, whether the subject believes
it to be correlated with the correct action or not. The following example illustrates one common
experimental setting that this framework nests.

Example. Consider eliciting a subject’s probabilistic belief p that an event E occurred via some
incentive-compatible mechanism, (Karni, 2009; Hossain and Okui, 2013). The correct belief, given
the available information, is the Bayesian p∗. The subject reports p and is paid π(p, p∗) that is
uniquely maximized at p = p∗ whenever the elicitation is incentive-compatible. A set of signals
could be to reveal to the subject the correct Bayesian posterior, in which case S = [0, 1]. Note this
is only valuable if the subject is not confident that their report is the correct one.

Given the above set-up, I propose the following confidence elicitation mechanism:

• The subject is asked to submit an action a ∈ A and a number δ ∈ [0, 1].

1. With probability δ2, they get zw.

2. With probability 1− δ, they get π(a, a∗).

3. With probability (1− δ)δ, they observe a signal s and can change their action.

In the case of the correct choice being objective and known to the researcher, she can set S = A

and allow the signal to reveal the correct action. The procedure, in this case, allows the subject
to be paid as if they knew the correct action a∗ with some probability. The subject’s belief about
a∗ may be a probability distribution over A or a set of possible a∗s depending on the theory of
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confidence that is chosen. Any such theory generates values V2 and V3 for the second and third
outcomes of the above mechanism. Furthermore, any such theory can generate V2 < V3 only when
the belief about a∗ is not degenerate, and the signal is expected to be informative. I assume the
DM’s attitude towards the lottery generated by the mechanism satisfies FOSD. That is given any
choice of δ, the DM faces a lottery with values 0, V2 and, V3, normalizing the value of zw to 0. Then
FOSD implies that the DM picks δ > 0 only if V2 > V3 which I show is only possible if she lacks
confidence.

Proposition 3. Suppose the DM’s attitude regarding the lottery induced by the mechanism satisfies FOSD
then δ > 0 only if the DM lacks confidence.

Proof :
I will show that this holds for theories that assign either a probability over actions (over their

correctness) and for theories that consider a set of actions to be correct. For the first types of
theories, suffice to show that degenerate beliefs imply V2 = V3, and for the latter types suffice to
show for singleton sets V2 = V3.

Suppose the DM assigns P (a = a∗) = 1 for some a. Let S∗ be the set of possible signals given
the DM’s beliefs, i.e. P (s|a) > 0 if and only if s ∈ S∗. Then consider first theories of second-
order probabilities. Consider P (a = a∗|s), then for any theories of updating, P (a = a∗|s) = 1 as no
theories of updating can assign positive probability to an event which previously had 0probability.7
Similarly, for theories with sets of probabilities, updating rules take a set of probabilities and the
signal to update to a new set of probabilities. For these theories, they do not allow updating to
a new a set of probabilities which contains probability distributions assigning positive values to
events which previously were assigned to be 0 in all the previous probability distributions.

A.2.2 Some Further Implementation Subleties

Before moving on, I discuss three subtleties about the implementation of the mechanism.
First, when there is an objectively correct action, one may wonder if it is better to offer subjects

a chance to replace their action with the objectively correct one. The answer is no because subjects
may not perceive the objectively correct answer as payoff maximizing. However, they may believe
(erroneously) that the objectively correct action is related to the subjectively correct action, in which
case there is still gain in learning it and less gain in the action being replaced. For instance, consider
a subject who learns that the Bayesian posterior is 0.99. She may consider that to be too extreme
and report 0.7. For such a subject, she may still find value in learning the Bayesian posterior but
be unwilling to replace her report with the Bayesian posterior.

Second, the cost they incur is a probability of obtaining the zw outcome. The cost is probabilistic
to guarantee incentive compatibility for non-risk-neutral individuals. For risk-neutral individuals,
imposing a flat fee can be optimal.

7The only exceptions are theories which consider observing signals which are not possible given the DMs current
belief such as Ortoleva (2012). However the DM does not expect to receive such signals and hence in her information
acquisition decision she does not account for these.
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Third, the signal can be used to elicit the source of lack of confidence. For instance, consider
a subject who is not confident in her choice between lotteries. Some theories explain this as
the subject having difficulty in computing the expected value, while other theories highlight the
subject’s uncertainty regarding her own risk attitudes. To test the first theory, the signal offered
could be simply the expected value. If subjects are willing to pay for it, then it must be that the
signal is valuable in clarifying uncertainty regarding a∗. Similarly, if a subject is uncertain of her
own risk attitude, perhaps they will know better after making other choices. Option 3 could be
simply the possibility of coming back to this choice.

A.3 Proposition 2

Proposition 2 is restricted to the binary signal case. I show here a more general T signal-type
case.

I consider a measure M of a sample, for instance, the average star rating or the percentage of
good reviews, defined as follows.

Definition 3. M is a sample measure if M(s) = M(κs) for κs ∈ NT
0 .

Therefore, a sample measure depends only on the distribution of signal types and not the sample
size. When two samples have the same sample size, it is natural to use such a measure to choose. I
show that if one chooses via such a measure when samples’ sizes are equal, then one also chooses
optimally when sizes are unequal but sufficiently large. Recall payoffs are normalized at 1 and 0 for
good and bad objects. Denote byUB(s1, s2|F ) = max{p(g|F, s1), p(g|F, s2)} the utility of a Bayesian
EU DM. Similarly denote by UM (s1, s2|F ) = p(g|F, s1) if M(s1) > M(s2) and UM (s1, s2|F ) =

p(g|F, s2) if M(s1) < M(s2), in case M(s1) = M(s2), UM (s1, s2|F ) = 1
2 [p(g|F, s1) + p(g|F, s2)].

UM is the expected utility of a DM who uses a M measure heuristic for her choices. Since the
heuristic M is independent of F and the sample size while the Bayesian choice is optimal, we have
UM (s1, s2|F ) ≤ UB(s1, s2|F ) in general.

Proposition 4. Let F and M be such that ∀|s1| = |s2|, p(g|F, s1) > p(g|F, s2) if and only if M(s1) >

M(s2), then the following holds

∀s1, s2, lim
κ→∞

UB(κs1, κs2|F )− UM (κs1, κs2|F ) = 0.

Note if M is taken to be the sample proportion of success, then the precondition ∀|s1| =

|s2|, p(g|F, s1) > p(g|F, s2) is implied by monotonicity. Therefore, this proposition implies propo-
sition 2.

Proof:
Note first that any sample s gives an empirical likelihood σs = [ s

1

|s| , ..,
sT

|s| ] = [σs
1, ..., σ

s
T ], I first

show the following lemma. Denote by fg, fb the pdfs of F .
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Pick any signal x with sample size N , the Bayesian posterior ratio given x is, denote by Σ the
set of T -dimensional likelihoods. As the sample size grows, we get:

lim
N→∞

p(g|x, F )

p(b|x, F )
= lim

N→∞

p(g)

p(b)

∫
Σ fg(σ)[σ

σx
1

1 ...σ
σx
T

T ]NdTσ∫
Σ fb(σ)[σ

σx
1

1 ...σ
σx
T

T ]NdTσ
,

= lim
N→∞

p(g)

p(b)

∫
Σ fg(σ)e

N [
∑T

i=1 σ
x
i ln(σi)]dTσ∫

Σ fg(σ)e
N [

∑T
i=1 σ

x
i ln(σi)]dTσ

,

= lim
N→∞

p(g)

p(b)

(2πN )
T
2
fg(σg,x)eN

∑T
i=1 σx

i ln(σ
g,x
i

)

|−H(fg)(σg,x)|
1
2

(2πN )
T
2
fb(σb,x)eN

∑T
i=1

σx
i

ln(σ
b,x
i

)

|−H(fb)(σb,x)|
1
2

,

=


p(g)
p(b)

fg(σg,x)
fb(σb,x)

if
∑T

i=1 σ
x
i ln(σ

b,x
i ) =

∑T
i=1 σ

x
i ln(σ

g,x
i ),

∞ if
∑T

i=1 σ
x
i ln(σ

b,x
i ) <

∑T
i=1 σ

x
i ln(σ

g,x
i ),

0 if
∑T

i=1 σ
x
i ln(σ

b,x
i ) >

∑T
i=1 σ

x
i ln(σ

g,x
i ).

Where σg,x = argmaxfg(σ)>0

∑T
i=1 σ

x
i ln(σ

g,x
i ) and σb,x = argmaxfb(σ)>0

∑T
i=1 σ

x
i ln(σ

b,x
i ). Line

2 to 3 is by Laplace’s method. H(fg)(σ
g,x) is the determinant of the Hessian of fg evaluated at

σg,x so it is finite. Laplace’s method requires a unique maximizer, which may not occur. I show
that this can be circumvented. Note that if x has strictly positive observations for each signal
type, then

∑T
i=1 σ

x
i ln(σ

g,x
i ) is strictly quasi-concave in σg,x

i , suffice to note ln(αz + (1 − α)w) >

α ln(z)+(1−α) ln(w) by strict concavity. Now suppose x has signals types with zero observations,
then note that any two accuracies σ1, σ2 which assign the same values to the non-zero types will
satisfy

∑T
i=1 σ

x
i ln(σ

1
i ) =

∑T
i=1 σ

x
i ln(σ

2
i ). So, we can "compress" the signal type space and rewrite

Fg, Fb so that the maximizer is unique. Denote by T x the set of types for which x has zero
observation. Then, define the signal space Σ∗ to have for types where x has non-zero observation
and a type t∗. Then, defining Fg, Fb accordingly will yield distributions where the function has a
unique maximizer.

Take any x and y, then note that as sample size grows, the two ways for UB(κx, κy|F ) −
UM (κx, κy|F ) > 0 to hold is if 1) both x, y are in the first category and the heuristic M orders
them incorrectly or 2) x, y are in different categories respectively and the heuristic M orders them
incorrectly. If we have both x, y in category 2 or 3, then asymptotically picking either has the same
payoff, so UB = UM .

Then take any x, y and suppose x, y are both in the first category. Suppose wlog that M(x) >

M(y). Consider w = κ|x|y and z = κ|y|x; note these two have the same sample size, and we can
make these arbitrarily big. Then we have w ≻ z which gives fg(σg,x)

fb(σb,x)
>

fg(σg,y)
fb(σb,y)

. So, the Bayesian
choice coincides with the heuristic choice. Take any x, y, in two different categories; suppose
wlog that the Bayesian posterior of x converges to 1 while that of y converges to 0. Then note
M(x) > M(y) by the same argument as above. The same argument applies to other cases.
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B Theoretical Notes

B.1 Updating Monotone in Likelihood Ratio and Relation to the Thought Experiment

I show that a wide class of models of non-Bayesian updating are functions of the likelihood
ratio in this binary state setting. Denote by ℓg(s) = p(s|g, σ) where s is a sample. And denote
by pB(g|s) the Bayesian posterior. First, a table summarizes the updating rules’ properties and
whether they can accommodate the thought experiment as well as the actual experiment.

Updating Rules Rejected By Literature
Actual Exp. Thought Exp.

Bayesian Updating Yes Yes Bayes and Price (1763)
Grether Updating Yes Yes Barron (2021); Coutts (2019); Grether (1980); Möbius et al. (2022)
Weighted Bayesian Yes Yes Epstein et al. (2010); Hagmann and Loewenstein (2017); Kovach (2021)
Divisible Updating Yes Yes Cripps (2018)
Coarse Bayesian No Yes Jakobsen (2021)
Confirmatory Bias Yes Yes Rabin and Schrag (1999)
Size/Proportion Regression No Yes Griffin and Tversky (1992)
Inertial Updating No No Dominiak et al. (2023)

I first begin with a proposition that shows that the thought experiment conflicts with updating
rules that are weakly monotone in the likelihood ratio. Then, I individually analyze the above
rules.

Proposition 5. A preference relation ⪰ is said to display "switching" if ∃s1, s2, κ such that s1 ≻ s2 and
κs1 ≺ κs2. A preference relation ⪰ is said to be derived from an updating rule that is weakly monotonic in
the likelihood ratio if ∃σg, σb such that L(s1|σg, σb) ≥ L(s2|σg, σb) implied s1 ⪰ s2. If ⪰ is derived from
an updating rule that is weakly monotonic in the likelihood ratio, then it cannot display switching.

Proof : Suppose ⪰ is derived from a rule that is weakly monotone in the likelihood ratio. Then
s1 ≻ s2 implies L(s1|σg, σb) > L(s2|σg, σb). Then, if it displays switching, we must have some
s1 ≻ s2 and yet κs2 ≻ κs2. So we must have L(s1|σg, σb)κ < L(s1|σg, σb)κ which contradicts the
earlier statement.

Bayesian updating: The Bayesian posterior ratio is proportional to the likelihood ratio and also,
therefore, strictly increasing.

Grether updating: p(g|s) = p(g)βℓg(s)δ

p(g)βℓg(s)δ+(1−p(g))βℓb(s)δ
.

Note the posterior ratio of the states is:[ p(g)
1−p(g) ]

β[
ℓg(s)
ℓb(s)

]δ where δ ≥ 0 is the signal reaction term.
Therefore, the posterior ratio is weakly increasing and a function of the likelihood ratio whenever
δ ≥ 0. If δ > 0, which is the standard estimate, otherwise the DM is ignoring information, then it
is strictly increasing.

Motivated Beliefs: p(g|s) = αp∗ + (1− α)pB(g|s).
This updating rule is a convex combination of the Bayesian posterior and some arbitrary belief
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p∗. Taking p∗ to be the prior would lead to underreaction. As the Bayesian posterior increases in
the likelihood ratio, this updating rule is also. Similarly, whenever α < 1, whenever the DM does
update, it is strictly increasing.

Divisible Updating: It is shown in Cripps (2018) that a divisible updating rule must be ho-
mogeneous of degree 0 to the likelihoods of a signal. Therefore, if two samples have the same
likelihood ratio, they will have the same posterior under a divisible updating rule. So, the updating
rule is a function of the likelihood ratio.

Coarse Bayesian: this updating rule stipulates that there are convex subsets P1, .., PN of [0, 1]
each with a "representative" probability p1 ∈ P1, ..., pn ∈ Pn. The updating rule says that if
pB(g|s) ∈ Pi, then p(g|s) = pi. So if the Bayesian posterior is in Pi, then the posterior is pi. As
convex subsets must be intervals, this updating rule is a function of the Bayesian posterior, which is
a function of the likelihood ratio. This updating rule is not strictly increasing but weakly increasing
and, therefore, cannot account for the thought experiment.

Size/Proportion Regression: Griffin & Tversky propose, for the symmetric (σg = 1−σb) case, a
regression which attempts to capture the weight of proportion of good signals, π, and sample size,
N , in a DM’s belief updating. Their regression can be mapped as an updating rule. In particular,
they estimate:

ln(ln(
p(g|s)

1− p(g|s)
)) = α1 ln(2π − 1) + α2 ln(N) + ϵ.

The idea here is that α1 = α2 implies Bayesian updating when the prior is uninformative
p(g) = 0.5. Note that this is not separable but can still not accommodate the thought experiment.
If two samples of size N1, N2 are multiplied to κN1, κN2, then they have a +α2 ln(κ), and therefore
any inequalities are preserved.

Confirmatory Bias:
This is technically a special type of perception rule; my setting is a little different as signals

arrive together in one batch, whereas they model sequential observation with binary signals.
However, the sequence turns out not to matter, so a faithful way of importing their model is to
assume the DM has a bias for a state and may misperceive a signal for the other state as a signal
for the biased state with probability q. Therefore, each sample (π,N) is changed to (π(1 − q), N)

or (π + (1− π)q,N), the rest is Bayesian updating.
Suppose a DM uses such an updating rule and perceives signals as iid. Then, by Theorem

1, the updating rule is strictly monotonic if and only if the ⪰ is separable. As we already have
transitivity, completeness, and continuity.

Let x = (π1, N1) and y = (π2, N2). If x ⪰ y then the DM’s belief σg, σb and bias in updating
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q ∈ (0, 1) satisfy

σ
π1(1−q)N1
g (1− σg)

(1+π1(q−1))N1

σ
π1(1−q)N1

b (1− σb)(1+π1(q−1))N1

≥ σ
π2(1−q)N2
g (1− σg)

(1+π1(q−1))N2

σ
π2(1−q)N2

b (1− σb)(1+π2(q−1))N2

.

This then implies that

π1(1−q)N1 ln(
σg
σb

)+(1+π1(q−1))N1 ln(
1− σg
1− σb

) ≥ π2(1−q)N2 ln(
σg
σb

)+(1+π2(q−1))N2 ln(
1− σg
1− σb

).

Now let z = (π3, N3) then note the new logged likelihoods of x+ z and x+ y are the following

[π1(1− q)N1+π3(1− q)N3] ln(
σg

σb
) + [(1 + π1(q − 1))N1 + (1 + π3(q − 1))N3] ln(

1− σg

1− σb
)

≥ [π2(1− q)N2 + π3(1− q)N3] ln(
σg

σb
) + [(1 + π2(q − 1))N2 + (1 + π3(q − 1))N3] ln(

1− σg

1− σb
).

Note separability holds, and therefore, the updating rule is a monotonic function of the likeli-
hood ratio.

Inertial Updating: Dominiak et al. (2023) follow a long line of literature which tries to model
updating via a minimization problem involving the prior, likelihoods and posterior (Jaynes, 1957;
Good et al., 1963; Williams, 1980; Shore and Johnson, 1980; Caticha and Giffin, 2006; Zhu et al.,
2014). While the literature traditionally focused on Bayesian updating, Dominiak et al. (2023)
contribute by showing it can be used to study non-Bayesian updating, and more importantly give
it behavioral foundations. Their updating rule can be rewritten as

p(g|s) = g(p(g))f(ℓg(s))

g(p(g))f(ℓg(s)) + g(1− p(g))f(ℓb(s))
.

As f and g have flexible functional forms, the posterior need not be increasing in the likelihood
ratio. The generality of this representation is due to the authors’ commitment to a simple axioma-
tization, and the paper offers several special cases that satisfy monotonicity in likelihood ratio. In
private conversation, the authors have shared they also strongly agree with monotonicity being an
intuitive property.

B.2 Non-binary qualities with known accuracy is equivalent to binary quality with
unknown accuracy

I say that ⪰ has a non-binary Bayesian expected utility representation with known accuracy
if there is a set of qualities q ∈ Q, a utility assigned to each quality u(q), and for each quality a
likelihood over signals of each type σq = [σq,1,, .., σq,T ], a prior p(q) over qualities, such that

x ⪰ y if and only if
∫
Q
u(q)p(q|x)dq ≥

∫
Q
u(q)p(q|y)dq.
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This can be rewritten as follows∫
Q
u(q)

p(q)p(x|q)
p(x)

dq ≥
∫
Q
uq

p(q)p(y|q)
p(y)

dq,

then I write out the likelihoods,∫
Q
u(q)p(q)

∏
t∈T σxt

q,t

p(x)
dq ≥

∫
Q
u(q)p(q)

∏
t∈T σyt

q,t

p(y)
dq,

and I expand the denominator,∫
Q
u(q)p(q)

∏
t∈T σxt

q,t∫
Q p(q′)

∏
t∈T σxt

q′,tdq
′dq ≥

∫
Q
u(q)p(q)

∏
t∈T σyt

q,t∫
Q p(q′)

∏
t∈T σyt

q′,tdq
′dq.

I show that if ⪰ has the above representation, then it also has a binary quality representation
with accuracy uncertainty with Bayesian updating and expected utility.

Then a Bayesian expected utility maximizer with a set q ∈ Q of potential accuracies, distribution
Fg, Fb over accuracies given quality, and p(g) priors behave as follows. Note for each accuracy q,
I denote the vector by σq = [σq,1,, .., σq,T ]. Note that p(g)fg(q)

p(g)fg(q)+p(b)fb(q)
= p(g|q). First note now the

DM chooses based on posterior therefore

x ⪰ y if and only if p(g|x) ≥ p(g|y).

This can be written as follows∫
Q
p(g, q|x)dq ≥

∫
Q
p(g, q|y)dq,

and then transformed by Bayesian updating∫
Q

p(g, q)p(x|g, q)∫
Q[p(g, q

′) + p(b, q′)]p(x|q′)dq′
dq ≥

∫
Q

p(g, q)p(y|g, q)∫
Q[p(g, q

′) + p(b, q′)]p(y|q′)dq′
dq,

and writing out the likelihoods,∫
Q

fg(q)p(g)
∏

t∈T σxt
q,t∫

Q[fg(q)p(g) + fb(q)p(b)]
∏

t∈T σxt
q′,tdq

′dq ≥
∫
Q

fg(q)p(g)
∏

t∈T σyt
q,t∫

Q[fg(q)p(g) + fb(q)p(b)]
∏

t∈T σyt
q′,tdq

′dq.

To show the equivalence of the two representations, suffice to show that we can find u(q)p(q) =

fg(q)p(g) and p(q) = p(g)fg(q) + p(b)fb(q). Start with fixed p(q) and u(q), note that since the utility
is linear, we can normalize u(q) such that

∫
Q u(q)p(q)dq = p(g) and all terms are positive, which

implies all u(q) ∈ (0, 1). Now define fb(q)p(b) = p(q)[1− u(q)] finishes the proof.
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C Experimental Design Notes and Further Experimental Results

C.1 Implementation of Elicitation Mechanism

There are several differences between my implementation and the formal mechanism. For
instance, δ is not elicited, but instead, I elicit whether subjects take some δ > 0. I show here that
choosing the δ > 0 option still implies the subject is not fully confident

I show it works for a MEU DM, and the same follows for smooth ambiguity. Consider the
lottery choice problem of choosing a lottery with a 0.75 probability of winning or Box A, which
draws X out of N balls. Denote by ΠX,N the set of beliefs about the probability the box is of the
winning color and by π∗

X,N the correct Bayesian posterior.
Then the choice of such a DM would be to choose the lottery whenever minΠX,N < 0.75. Let

us first assume that the DM assigns p(X,N) to drawing X out N balls of the winning color and
that she is SEU towards this layer of uncertainty. Then her payoff is:

N∑
X=0

p(X,N)[1{minΠX,N < 0.75}0.75 + 1{minΠX,N ≥ 0.75}minΠX,N ]

If she opts to use the second option, then her payoff is

49

100
[1{minΠX,N < 0.75}0.751{minΠX,N ≥ 0.75}minΠX,N ]

+
1

2

N∑
X=0

p(X,N)[1{π∗
X,N < 0.75}0.75 + 1{π∗

X,N ≥ 0.75}π∗
X,N ].

We see that the DM can choose the second option only if the following holds

49

100

N∑
X=0

p(X,N)[1{π∗
X,N < 0.75}0.75 + 1{π∗

X,N ≥ 0.75}π∗
X,N ]

≥

51

100

N∑
X=0

p(X,N)[1{minΠX,N < 0.75}0.75 + 1{minΠX,N ≥ 0.75}minΠX,N ].

Since 49
10 < 51

10 , there has to be strictly positive gain from making the correct decision, which is
only possible if the DM does not have degenerate beliefs and hence is not fully confident.

C.2 Regression with Interaction Terms

Standard Deviation and Sample Size Neglect. Here, I estimate the following regression with
interaction terms

STDi = β0 +
∑
t∈T

δtβ1,tPi +
∑
t∈T

δtDt + λXi + ϵi.
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Table 7: Opting to Learn and Sample Size Neglect

Opt To Learn - od
(1) (2) (3) (4)

β1,sym −0.13*** −0.10*** −0.12*** −0.08**

(0.02) (0.02) (0.03) (0.04)
β1,asy −0.09*** −0.08*** −0.16*** −0.11***

(0.02) (0.02) (0.03) (0.04)
β1,cor −0.09*** −0.12*** −0.10*** −0.13***

(0.2) (0.02) (0.03) (0.04)

Controls/Treat.Dummy No Yes No Yes
Full/Sub-Sample Full Full Sub Sub

* p < 0.10, ** p < 0.05, *** p < 0.01
Note: Robust standard errors in parentheses

Table 6: Non-Parallel ICs and Sample Size Neglect

STD of Angles of ICs - STDi

(1) (2) (3) (4)

β1,sym 12.5*** 12.0*** 19.9*** 21.0***

(1.2) (1.8) (1.8) (2.5)
β1,asy 10.7*** 11.3*** 19.9*** 17.4***

(1.2) (1.7) (1.8) (3.9)
β1,cor 11.6*** 12.3*** 19.9*** 20.9***

(1.0) (1.6) (1.8) (3.8)

Controls/Treat.Dummy No Yes No Yes
Full/Sub-Sample Full Full Sub Sub
R2 0.19 0.22 0.47 0.49
N 400 386 147 141

* p < 0.10, ** p < 0.05, *** p < 0.01

Note: Robust standard errors in parentheses

Sample Size Neglect and Confidence. Here I estimate the following regression with interaction
terms

od = β0 +
∑
t∈T

δtβ1,tpd +
∑
t∈T

δtDt + λXi + ϵd.
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C.3 Logit and Probit Regressions

C.3.1 Self-Report and Elicited Confidence

Table 8: Self-Report and Elicited Confidence

Logit Self-Reported Confidence - Ci

(1) (2) (3) (4)

Oi −1.11*** −1.26*** −1.91*** −1.95***

(0.34) (0.35) (0.60) (0.62)

Controls/Treat.Dummy No Yes No Yes
Full/Sub-Sample Full Full Sub Sub
N 400 391 147 146

* p < 0.10, ** p < 0.05, *** p < 0.01

Note: Robust standard errors in parentheses

Table 9: Self-Report and Elicited Confidence

Probit Self-Reported Confidence - Ci

(1) (2) (3) (4)

Oi −0.69*** −0.79*** −1.18*** −1.20***

(0.21) (0.21) (0.37) (0.38)

Controls/Treat.Dummy No Yes No Yes
Full/Sub-Sample Full Full Sub Sub
N 400 386 147 141

* p < 0.10, ** p < 0.05, *** p < 0.01

Note: Robust standard errors in parentheses
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C.3.2 Sample Size Neglect and Confidence

Table 10: Sample Size Neglect and Confidence

Opting to learn od

(1) (2) (3) (4)

pd, sample size neglect −0.53*** −0.57*** −0.73*** −0.71***

(0.08) (0.14) (0.08) (0.14)

Controls/Treat.Dummy No Yes No Yes
Full/Sub-Sample Full Full Sub Sub
N 4000 3860 1470 1410

* p < 0.10, ** p < 0.05, *** p < 0.01

Note: Robust standard errors in parentheses

Table 11: Sample Size Neglect and Confidence

Opting to learn od

(1) (2) (3) (4)

pd, sample size neglect −0.31*** −0.33*** −0.41*** −0.41***

(0.05) (0.05) (0.08) (0.08)

Controls/Treat.Dummy No Yes No Yes
Full/Sub-Sample Full Full Sub Sub
N 4000 3860 1470 1410

* p < 0.10, ** p < 0.05, *** p < 0.01

Note: Robust standard errors in parentheses
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D Experimental Instructions

D.1 Instructions
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D.2 Choice Examples
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