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Abstract

Misspecification is theoretically linked with updating failures, but empirical ev-
idence has been lacking. We document the empirical relevance and estimate the
impact of misspecification on updating. We collect a novel high-frequency dataset on
students’ beliefs about grades in a freshman course. Students are overconfident, their
beliefs do not improve over time, and they overestimate the testing noise by a factor
of 3. Our RCT exogenously shocks and improves students’ belief in the testing noise.
Treated students reduce their prediction errors by 32%. We estimate the impact of
misspecification structurally and find that a lower bound of 25% of prediction errors
can be attributed to misspecification. Our finding suggests that misspecification is a
major obstacle to processing information correctly, but it can be alleviated via simple
interventions.
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1 Introduction

Why do individuals fail to learn from highly informative signals? What can help them
learn better?

The bulk of the literature on belief updating is experimental and has focused on be-
havioral and cognitive explanations to explain the failure of Bayesian updating.1 These
explanations range from overconfidence and ego-driven motivated beliefs2 to highlighting
the computational difficulty of Bayesian updating.3 It is salient from introspection that
people are often over-confident and averse to updating negatively about themselves. Sim-
ilarly, Bayesian updating was discovered contemporaneously with calculus, highlighting
its non-triviality. If these channels drive a large share of belief updating mistakes, then it
may be challenging to improve how people update. Learning probability theory is hard,
and learning to be less egocentric is perhaps impossible.

We posit that a perceptual channel also drives updating failures in the real world. In
empirical settings, distinct from the lab, agents may face uncertainty and be misspecified
regarding how to interpret information. Theoretically, such agents will update sub-
optimally even when they apply Bayes rule correctly. Therefore, this channel differs from
updating biases of the earlier channels. Misspecification has been studied theoretically,
initially by Berk (1966), which shows that a misspecified Bayesian belief need not converge
to the truth asymptotically. More recently, the implication of misspecification has been
explored in social learning (Heidhues et al. (2018); Frick et al. (2020, 2023)) as well as for
individual belief updating failures (Fudenberg et al. (2021); Bohren and Hauser (2023)).
However, we are unaware of works that empirically document the relevance in the real
world.4 In this paper, we empirically document the phenomenon’s existence, quantify the
extent to which it impacts belief updating, and study whether one can alleviate its adverse
effects.

Our empirical setting is a large first-year class in calculus. We study students who
receive past test grades and predict their future grades. The correlation coefficient between
tests is 0.8; hence, past test grades are highly informative signals. Previous studies (Zafar
(2011); Stinebrickner and Stinebrickner (2014); Wiswall and Zafar (2015); Oreopoulos and
Petronĳevic (2023)) have shown that students have difficulty in learning, which can lead
to costly mistakes in the allocation of study hours, dropping and field majoring decisions.
In our setting, students begin the term with an absolute prediction mistake of 15.62

1See Benjamin (2019) for a fairly recent survey.
2Ertac (2011); Eil and Rao (2011); Buser et al. (2018); Coutts (2019); Drobner (2022); Möbius et al. (2022).
3Grether (1980); Amelio (2022); Guan (2023); Gonçalves et al. (2024).
4Castillo and Youn (2023) and Chiara and Florian H. (2024) explore this issue in the lab.

2



percentage points (pp) and are generally overconfident. We observed no improvement in
beliefs after four test grades, as their prediction mistake on the fifth test was 16.8pp.

We hypothesize that, along with updating biases, students are misspecified and under-
estimate the correlation between tests. They may overattribute the realized grade to noise
rather than their underlying ability. This would result in underreacting to the information
received. We then would expect that informing students about the tests’ informativeness,
without the need to teach them how to update or give them additional information, would
improve their predictions.

We conduct a randomized control trial (RCT) and shock exogenously students’ beliefs
regarding the testing noise. Importantly, our treatment also must not change their belief
in their own ability. Our treatment informs students about the correlation between test
grades in a salient manner without specific reference to any particular grade. Therefore,
there is no information relevant to themselves that the student can infer from the treatment.
Yet, we find that treated students make 31% less absolute prediction mistakes. We take
this to be strong causal evidence in favor of misspecification.

Such a treatment is challenging to perform in most empirical settings for three reasons.
First, we aim to give subjects truthful information. This requires the researchers to know
the testing informativeness. We overcome this by accessing past year’s test grades. This
allows us to credibly inform students about testing informativeness and reduces the
information’s relevance for inferring their ability. Second, spillover effects pose a real
threat. If the information we give is helpful and impactful, then we must acknowledge
that students might share it with others. We overcome this with a staggered rollout of
the treatment. We also checked and confirmed that there were no spillover effects (which
would only bias our results towards the null). Third, we want to recover the treatment
effect on updating only. However, if treated students also studied harder, leading to better
predictions, we would recover two confounding treatment effects. Put differently, we are
in a non-standard situation where we do not want the treatment to induce behavioral
changes. Therefore, we administered the treatment only three days before the final exam
to limit behavioral adaptation, and we also observed no difference in the performance
between the control and treatment groups.

While our RCT provides causal evidence on the existence of the channel, it does not
measure the extent to which it impacts belief updating. To do so, one needs to recover both
the objective and subjective, potentially misspecified information structures. Recovering
the objective information structure requires a large sample of repeated measurement,
which we have in our setting with a large class and multiple tests. Estimating the subjective
information structure empirically is challenging, as this requires recovering the agent’s
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belief regarding the variance of the noise. To our knowledge, we are the first paper to
do so empirically. We estimate the objective testing noise’s standard deviation to be 3.75,
while students overestimate it to be 11, more than twice as much. Students who believe
the testing noise is higher also make larger prediction mistakes. Using a structural model,
we estimate the absolute prediction mistakes of a correctly specified and misspecified
Bayesian agent. Comparing the two along with the empirical absolute prediction mistake
offers us a measure of the effect of misspecification without committing to a particular
model of non-Bayesian updating. We find that 25% of prediction mistakes (lower bound)
are due to misspecification, and the effect of misspecification is particularly strong for the
first test and the final exam.

Taken together, our results suggest that misspecification is a relevant channel for the
failure of updating, but unlike other channels, it can be alleviated via simple interventions.

The paper is organized as follows. In section 2, we provide an exposition of our channel
and our results via a conceptual framework. Section 3 goes over our empirical setting and
data. Sections 4 and 5 provide descriptives and results from our RCT. Section 6 uses a
structural model to estimate the impact of misspecification, and section 7 concludes the
paper.

2 Conceptual Framework

Consider a simple model to illustrate misspecification’s role in the failure of belief
updating. Denote periods by t ∈ {0, 1}. Suppose for simplicity that grades are generated
by

gt = θ + ϵt.

Where gt is the grade of a student at time t, and it is a function of the student’s ability θ

and a testing noise ϵt ∼ N (0, σ2
ϵ ). The student believes instead that ϵt ∼ N (0, σ̃2

ϵ ) and faces
uncertainty regarding her ability as θ ∼ N (µθ, σ̃

2
θ). In our data, the vast majority (90%) of

students overestimate the testing noise, σ̃2
ϵ > σ2

ϵ . We ask students to predict their next test
grade, g2, after observing g1. After observing g1, one should predict their expected belief
of θ. For a Bayesian and misspecified student, the expected grades gB2 and gM2 are

gB2 =

µθ

σ2
θ
+ g1

σ2
ϵ

1
σ2
θ
+ 1

σ2
ϵ

and gM2 =

µθ

σ2
θ
+ g1

σ̃2
ϵ

1
σ2
θ
+ 1

σ̃2
ϵ

.

Note that, for a Bayesian, the larger σ2
ϵ is, the less they update towards the signal. Since

the larger σϵ is perceived to be, the less weight the student puts on the signal g1 as opposed
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to her prior µθ. Therefore, an overconfident student with an incorrect belief µθ > θ will
update slower if they believe the testing noise to be high. Additionally, the student’s actual
expected grade ĝ2 may differ from both gB2 and gM2 if she displayed biased non-Bayesian
updating.

Previous studies in education economics5 as well as behavioral economics6 have both
documented a failure of learning. It is standard to collect the expected grade, ĝ2, and
prediction error, |g2 − ĝ2|. However, it is necessary to compute the Bayesian posterior
distribution to quantify the failure of Bayesian updating. This requires knowledge of the
prior µθ and σθ. Additionally, in an empirical setting, we also need to collect sufficient
data to estimate the testing noise σϵ and minimize other potential unobserved signals.
To overcome these challenges, we repeatedly collect students’ expected grades and their
belief distribution right before and after each test in an incentive-compatible manner.
Collecting their belief distribution allows us to recover the prior, and having repeated
measures enables us to estimate σϵ. We find that test grades are highly correlated between
periods, hence extremely good signals.7 The testing noise, σϵ, is estimated to be 3.75 on
average. Given this and the student’s biased prior beliefs, we find the Bayesian absolute
prediction error is 11.4pp on average. Yet, the average prediction error of students is
17.6pp, which does not get smaller over time.

Collecting these distributional variables still would not allow a researcher to disentan-
gle whether updating failure is due to biases or misspecification. To do so, the researcher
must recover the objective testing noise σϵ and the subjective noise σ̃ϵ. We, therefore,
additionally collect belief data regarding the testing noise. As σϵ is a complex object, one
cannot elicit it directly by asking. We elicit it indirectly in two ways. First, we elicit the
effect of good luck on grades, formally, it is E[ϵ | ϵ ≥ 0]. Given the normal distribution, this
maps bĳectively to σϵ. Simultaneously, we also elicit the proportion of prediction mistakes
due to testing noise as opposed to uncertainty about their ability. As the prediction error
squared, E[(gt − ĝt)

2], is equal to σ2
θ + σ̃2

ϵ (without the need of normality), this also allows
us to recover σ2

ϵ . These independent methods yield close and consistent measures of
σ̃ϵ = 11.32 and σ̃ϵ = 11.00 on average. Therefore, students overestimate the testing noise
by almost three times.

We disentangle the effect of biased updating and misspecification by examining how
changes in students’ prediction errors over time can be attributed to these factors. We
focus on the changes in prediction error as primitive and do not restrict our analysis to

5See Zafar (2011); Stinebrickner and Stinebrickner (2014); Wiswall and Zafar (2015); Oreopoulos and
Petronĳevic (2023).

6See Grether (1980); Coutts (2019); Barron (2021); Möbius et al. (2022).
7The correlation coefficient between tests is around 0.8.
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any particular model of non-Bayesian updating. Let Γt =
∑

i |ĝit−git| denote the observed
prediction error, we denote by ΓB

t =
∑

i |gBit − git| and ΓM
t =

∑
i |gMit − git| the Bayesian

and misspecified agents’ prediction error. Then consider Λt =
ΓM
t −ΓB

t

Γt−ΓB
t

, the denominator
is a measure of failure of updating as ΓB

t is the theoretical minimal amount of mistakes
one can make. The numerator measures a misspecified Bayesian’s mistakes vis-a-vis a
correctly specified Bayesian. In general, we expect ΓB

t ≤ ΓM
t ≤ Γt, therefore Λt ∈ [0, 1]. If

Λt = 1 for all time periods, then all reductions in mistakes are due to misspecification, as
incorporating Bayesian updating alone does not reduce aggregate mistakes. Similarly, if
Λt = 0, we see that misspecification does not introduce any prediction mistakes. Therefore,
Λt captures the proportion of mistakes explained by misspecification.

We find that misspecification plays a bigger role in the first test and on the final exam.
In particular, Λt is 0.71 and 0.55 for the first test and final exam, respectively. It is lower,
at 0.26 and 0.29 for the second and third tests, respectively. We note that these should
be considered lower bounds for several reasons. First, our estimate of ΓB

t is an upper
bound because our Bayesian model is itself misspecified and students may observe more
information than we have. Therefore, an actual Bayesian should be making even less
mistakes than our estimate. Second, ΓM

t is likely a lower bound as we cannot cover all
potential misspecifications in our misspecified model. For instance, we assume students’
misspecified model has normal testing noise. As testing noise is normal in our data, this
assumption removes some potential prediction mistakes due to misspecification.

To offer further evidence that misspecification plays a key role in belief updating,
we conduct an RCT before the final exam. Theory and our data show that students
who believe the testing noise to be higher also make worse predictions. Therefore, we
conduct an RCT which informs students that σϵ, the testing noise, is very low - the treated
group became more responsive to information and improved by lowering their prediction
mistakes by 32%. Students are given an information treatment that provides exogenous
shocks to σ̃ϵ. Importantly, this treatment does not offer them any information regarding
their ability; hence, it only impacts their belief regarding testing noise. We found that
the treatment successfully informed students that the testing noise was lower than they
thought, and reduced their prediction error. To quantify the magnitude of reduction, we
consider Λtreat = 1 − Γtreat−ΓB

5

Γcontrol−ΓB
5

. Here Γtreat and Γcontrol are the prediction error of the
treatment and control groups. If the treatment, which reduces only misspecification, is
fully effective and there is no updating bias, then the numerator of the second term is 0
and Λtreat = 1. Alternatively, if the treatment is ineffective or misspecification does not
contribute to prediction mistakes, then Γtreat = Γcontrol andΛtreat = 0. We findΛtreat = 0.32

and interpret this as our treatment reduced prediction mistakes by around 32%.
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3 Empirical Setting and Data

Background. We collected data from a large first-year calculus course that is the
prerequisite for most STEM majors at the University of Toronto. The course was run from
September 2022 until April 2023. A total of 1,508 students start in the class, and a total of
1,155 finish the class.

Survey. The class grade is determined mainly by 4 midterms and a final exam, which
make up 70% of their grades, along with some other minor components such as problem
sets and attendance. We ran five surveys, one for each test, and asked students to predict
their grades and elicited other variables. These surveys were run three days before their
next test, and students always had their last test grade returned before the survey.8 To
ensure a high takeup rate, we incentivized survey completion with a participation grade in
the class, totaling up to 2% for completing all five surveys (0.4% for each survey). This led to
a high takeup rate of 88% and 90.7% on the first and last surveys, respectively. Additionally,
grade predictions are incentivized based on accuracy.9 One important institutional feature
of the class is that the instructors do not release any average, median, or other statistical
information regarding the grade distributions - and there is no curving. The instructors
clearly state that the grade you see is the grade you get. Therefore, we take students to
believe their grades are not influenced by their peers nor accounting for curves when
making inferences.

S1 S2 S3 S4 S5 - RCT

Test 1 Test 2 Test3 Test4 Final

Variables. In this paper, we focus on a subset of the collected variables regarding
student beliefs.10 First, we observe each student i’s grades across the five tests, which we
denote by git, for t ∈ {1, 2, ..., 5}. We ask each student for their expected grade, ĝit, and we
denote by Γit = |git − ĝit| the absolute prediction error. Along with the expected grade,
we also elicit the probability this grade falls in the different ranges. In particular, we ask
for the probability that git is less or equal to X , for X ∈ {50, 60, 70, 85}.11 Formally, we

8Additionally, we remind them of their grades.
9We pay $20 to the best 20 predictions, and an additional 20 random students are paid using an incentive-

compatible mechanism. Students are told that truthful reporting of their best guesses maximizes their
expected earnings.

10For the set of collected variables, please see the appendix for the full survey.
11We chose 85 instead of 90 as the University of Toronto counts all grades above 85 as a 4.00 (perfect for

GPA).
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denote this by Git(X) = p(git ≤ X). As the average grade is not publicized, we also elicit
students’ beliefs regarding the class average and denote it by ˆ̄git.

Finally, we elicit their belief regarding the informativeness of testing. As the variance
of the testing noise is a complex object, we do not elicit it by asking directly. First,
we highlighted to them that "luck" can impact their grade exogenously and gave them
examples such as good or bad sleep, a harsh or generous grader, and studying for the
right or wrong questions. They are then asked how much higher they expect their grades
to be if they were positively impacted by luck, which we denote by eit, and formally,
eit = E[ϵit | ϵ ≥ 0]. Additionally, we ask them for the proportion of prediction errors rit

due to luck as opposed to uncertainty regarding their ability.

4 Descriptive Summary

Test Grades. Students have five grades from the tests, and the averages are very
consistent over time, with the first-term test being on the easier side. We note that most
of these students need to pass this class (score above 50), and often, many need a higher
grade to qualify for different majors.12 At the instructor’s request, we do not share class
averages; nevertheless, in our dataset, only 64% of the initial student body has a passing
grade.13 Therefore, this is an extremely challenging class, and learning about one’s ability
in this class is beneficial. The correlation between tests is also very high, suggesting that
test grades are highly predictive of each other and that past grades are very informative
signals of future performances. The correlation, corr(git−1, git) is (0.78, 0.79, 0.73, 0.81)

between the 5 time periods.
Student Beliefs Regarding Grades. As in the figure below, students begin with opti-

mistic beliefs, and this optimism has a slight downward trend over time. On average, the
prediction errors are 20.72pp and 11.32pp when the student overestimates and underes-
timates her grades, respectively. On average, a student who receives a grade lower and
higher than her prediction adjusts her next period’s prediction down and up by 3.95pp and
3.01pp respectively.14 In our sample, 69% and 29% of predictions are greater and lower
than the realized grade, respectively. Both of these errors and the percentage are stable
throughout the periods. In general, we see that prediction errors persist and remain high
throughout the class despite what are statistically informative signals. The descriptives
suggest students are overconfident and are underreacting to the information. However,

12The data science specialist program requires a grade higher than 70% in this class.
13Note: this includes assignments, attendance, surveys, and other grades besides the test grades.
14This is not necessarily a sign of asymmetric updating, as students are getting different strength of signals

in the two groups.
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Table 1: Summary Statistics of Test Grades and Expected Grades

Time Period
Variable t = 1 t = 2 t = 3 t = 4 t = 5

Grade git
Mean (relative to test 1) 0.00 -9.22 -8.04 -11.78 -5.25
Std. Dev. 20.54 22.10 23.04 20.56 24.34
N 1,508 1,399 1,278 1,129 1,155
Expected Grade ĝit
Mean 68.58 69.09 66.93 65.13 63.84
Std. Dev. 14.51 14.52 15.22 15.82 15.79
N 1,333 1,211 1,145 1,043 1,048
Absolute Prediction Error Γit

Mean 15.62 19.46 18.28 18.31 16.80
Std. Dev. 12.83 14.72 14.99 14.21 13.66
N 1,276 1,151 1,093 960 1,011

Note: We do not report the average grade as per the instructor’s request.
Grades are reported with test 1 as the baseline.

Sample size N changes due to dropping and survey take-up.

we cannot quantify whether students are updating enough given the information without
making specific modeling assumptions.

Student Beliefs Regarding Testing Noise. On average, students believe that 37%
of their prediction errors, rit, is due to luck and that good luck, eit, raises their grade
by 9.03pp on a test. Both of these remain stable throughout the periods. The fact that
eit remains stable suggests that students are not inferring from their grades (which are
highly correlated) that the testing noise must be low. And the fact that rit remains stable
jointly implies students do not believe overall their predictions are getting better. When a
student’s prediction last period was higher (and lower) than their actual grade, then the
average eit is 9.07pp (and 8.55pp), while the average rit is 38.23% (and 34.93%), significant
at any p-value. These behaviors align with theoretical models such as Bénabou and Tirole
(2004), which suggest that misspecification of information can be motivated by ego.

Belief Change and Testing Noise. One pattern one may find natural is when students
get a grade lower than what they predicted; then they should adjust their next prediction
downward. We verify this, and Figure 1 shows the change in prediction, ĝit − ĝit−1, given
last period’s prediction error, git−1− ĝit−1. We note that, in general, students are not willing
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to lower their prediction by more than 5pp even when their prediction error is close to
40pp. This is not necessarily a sign of non-Bayesian updating. If signals are viewed as
very uninformative, a Bayesian could display this pattern. Furthermore, Figure 2 shows
that students who tend to make larger and negative prediction errors are precisely those
who believe testing to be noisier.

Figure 1: Prediction change and prediction error

Heterogeneity. We find significant heterogeneity in terms of test grades across gen-
der, first-generation status, and international student status. On average, male students
score 6pp higher than their female counterparts; domestic students score 2.5pp higher
than international students; and non-first-generation students score 5pp higher than first-
generation students. All of these differences are statistically significant at any standard
p-value. For prediction errors, We find that male students tend to have 0.6pp higher ab-
solute prediction errors (p-the value of 0.104); international and first generations students
have absolute prediction errors that are 1.7pp and 2pp higher than their counterparts,
respectively (significant at any p-value). Additionally, we find that first-generation and
domestic students believe testing to be less noisy, but the differences are not economically
significant.15

15First-generation students believe that 35.7% of their prediction errors stem from noise while non-first-
generation student believe it to be 37.1% (statistically significant differences at any p-value). For domestic
and international students, we find these numbers to be 35.5% and 38%, respectively (statistically significant
differences at any p-value).
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Figure 2: Effect of good luck and prediction error

5 Randomized Control Trial

Treatment. We conduct an RCT before the last test. The goal of the RCT was to
exogenously influence students’ beliefs regarding the testing noise - without giving them
additional personal information regarding their performance. To accomplish this, we
leverage the fact that the class did not release any information regarding averages. In
particular, treated students first reported their beliefs via ĝi5, ˆ̄gi5, Gi5, ri5 and ei5, then they
are shown that the effect of luck is minimal (see Figure 3). In particular, we inform them
of the probability, in the previous year, that a student who scored 10pp to 15pp above and
below the average across midterms also scores 5pp below and above the average on the
final exam, respectively. Furthermore, we show the total percentage for all of the classes -
to highlight that these grades are truly highly correlated. Because students do not know
class averages, it is difficult to know if they lie in these grade bins exactly. Hence, this
provides no information to help predict their future grade, only that they should use their
previous grades more. Students are asked to consider this information carefully and are
locked on this page for two minutes before they can proceed. Additionally, students are
shown their previous grades, git, and their expected class average, ˆ̄git. We then collected
belief variables again, and we denote by ĝTi5, ˆ̄g

T
i5, G

T
i5, r

T
i5 and eTi5, the treated version of these

variables.
Group Assignment. We note that spillover effects are a serious threat to such designs,
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Figure 3: Treatment Example

and in general, their potential existence implies that the treatment will be underestimated.
We take many measures to carefully minimize spillover. One approach would be to
run the survey without treatment first. This obtains an uncontaminated control group.
However, timing matters, and students who complete the survey early differ from those
who complete it late. To overcome this, we perform a staggered implementation. First,
students either attempted to complete the survey in the first three hours or did not. This
classifies them as Early or Late. Among the early group, half of the students proceeded
with the survey without treatment, while the other half were asked to perform the survey
later. This allowed us to ensure that the early control group was uncontaminated from
potential spillover effects, and comparing them with the early treatment group allowed
us to rule out heterogeneity due to time. Additionally, each treated student first reports
their beliefs without being treated and reports another belief post-treatment.

Table 2 documents some student characteristics. First, there are no significant differ-
ences between the control and treatment groups for observable characteristics such as
past grades and gender ratio. Second, between the treatment and control groups, their
reported beliefs on their expected grade and belief in the effect of noise do not differ be-
fore the treatment. Similarly, the average past prediction error does not differ between the
treatment and control, fixing the timing. Finally, there is a noticeable difference between
the early and late groups regarding actual grades, highlighting that timing matters.

There are two natural ways to estimate the effect of our treatment. We call these within
and between group effects. The between-group effect consists of comparing the control
group with the treatment group. The within-group effect consists of comparing the pre-
treatment reports to the post-treatment reports within the treatment group. Throughout
the analysis, we showcase both effects.
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Table 2: Group Statistics

Treatment Early Control Early Treatment Late Control Late

Mean SE Mean SE Mean SE Mean SE

Test 1 grade gi1 0.00 (1.33) -1.96 (1.36) -4.47 (0.94) -5.56 (0.92)
Test 2 grade gi2 0.00 (1.53) 0.04 (1.66) -3.13 (1.13) -4.01 (1.07)
Test 3 grade gi3 0.00 (1.66) 0.53 (1.74) -3.83 (1.18) -5.00 (1.18)
Test 4 grade gi4 0.00 (1.57) -0.08 (1.77) -6.61 (1.10) -6.85 (1.04)
Male Prop. 0.61 (0.04) 0.72 (0.04) 0.59 (0.03) 0.61 (0.03)
First-gen Prop. 0.14 (0.03) 0.21 (0.03) 0.21 (0.02) 0.18 (0.02)
International Prop. 0.53 (0.04) 0.48 (0.04) 0.54 (0.03) 0.53 (0.03)
Pre-treatment expect grade ĝi5 65.35 (1.30) 66.35 (1.38) 63.53 (0.76) 62.56 (0.83)
Pre-treatment effect of luck êi5 9.55 (0.44) 9.14 (0.39) 8.84 (0.24) 8.88 (0.24)
Average past prediction error -9.52 (0.79) -10.19 (0.88) -10.42 (0.63) -11.10 (0.63)

Sample Size 146 153 364 385

Note: Test grades are relative to the Treatment Early group.

Treatment on Belief of Noise. Recall our treatment seeks to show students that testing
noise is low. We first show the average treatment effect on the effect of luck, eit, and the
proportion of prediction mistakes due to noise, rit. For the control group, eit and rit are,
on average, 8.96pp and 37.13%, respectively. For the treatment group’s pre-treatment
report, we find almost identical values of 9.04pp and 38.1%. For the post-treatment
reports, these are lower, with values of 7.21pp and 28.53%, respectively. As they are
virtually identical, we pool the control and pre-treatment reports in our figures. Figures 4
and 5 plot the confidence intervals, showing that the treatment successfully reduced the
student’s perception of testing noise. We report the overall average treatment effect in the
figure, but it turns out that both the timing effect and spillover are minimal. The appendix
shows the other estimations that are similar. In Appendix A, we show the treatment effect
by early/late status, gender, international status, and first-gen status. We find the same
effect across these subgroups.
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Figure 4: Belief Regarding Effect of Good Luck on Grade

Figure 5: Belief Regarding Effect of Luck on Prediction Mistakes

Placebo Tests. We might worry that predictions differ because students study harder
after the treatment. That is why we only ran the experiment three days ahead of the final
exam. We also find that the treated students do not score differently from the control
students.16 This suggests that our implementation did not induce behavioral changes
that would confound with effects from our updating channel. Additionally, mechanical
changes induced by the treatment, such as demand effects, could be in play. We check
whether the treatment has impacted other variables. We first check that the treatment did
not impact a student’s belief regarding the average grade. This is important as we did
want students to infer about the class average to make better predictions - only to infer that
grades are correlated. We find that treated students do not report a different prediction of

16The difference between the groups is 0.05pp with a p-value of 0.73. We cannot reject the null that the
groups have the same mean.
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the average than control students and that they do not change their predictions of average
post-treatment. Therefore, we are confident that the treatment did not induce mechanical
changes in their beliefs.

Effect on Responsiveness to Information. We investigate whether treated students
are more responsive to information. This prompts the natural question: what is respon-
siveness to information? This, in turn, prompts us to ask: what are response measures
and information measures? The right response measure is the unit the student is adjust-
ing. And the right information measure is what a student is taking into account when
adjusting the response. A particular response measure is natural in our empirical setting:
expected grade. As our treatment itself asks them to consider the effect of luck on grades,
it is natural that students potentially respond via their grade predictions. Two measures
of information stand out as plausible candidates: past grades relative to the average and
past prediction errors. Our treatment itself divulges information via the class average, and
we show students their previous grades and expected class averages. Therefore, we find
it likely that students may consider their past grades relative to their expected averages
to be informative. Similarly, past prediction errors are natural for students to recall, as we
highlight in the treatment that luck may impact their prediction error. A priori, we do not
know how and whether students actually think through these measures. Therefore, we
empirically examine whether these response and information measures are related and
whether our treatment impacts these relationships.

Denote by i ∈ T if student i is in the treatment group. We consider the response
measure to be how much a student adjusts her predicted grade from previous periods:
∆i = ĝTi5 − 1

4

∑
t<5 ĝit if i ∈ T and ∆i = ĝi5 − 1

4

∑
t<5 ĝit otherwise. We denote by Φi =

1
4

∑4
t=1(git − ˆ̄git) their past deviation from the average. And we denote the average past

prediction errors by Ψi =
1
4

∑4
t=1(git − ˆ̄git).

To measure the effect of the treatment on responsiveness to information, we consider
the following regressions

∆i = β0 + β1Ψi + β21{i∈T }Ψi + β31{i∈T } + β4

∑
t<5

1

4
git + β5gi5 + β5Xi + ξi (1),

∆i = β0 + β1Φi + β21{i∈T }Φi + β31{i∈T } + β4

∑
t<5

1

4
git + β5gi5 + β5Xi + ξi (2).

We capture the responsiveness to information of the control via β1 and the treatment
effect on responsiveness via β2. Additionally, we expect the treatment effect to depend
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on actual past grades and not only the prediction effect or deviation from the average.
Therefore we control for the average past grades. Additionally, we control for the actual
final grade to capture individual variations in the final period unaccounted for from
previous periods. Finally, we include controls such as gender, international status, age,
and first-generation status in Xi.

Table 3: Responsiveness to Information

Ψi Prediction Error Φi Average Deviation

Between Within Between Within

β1 control responsiveness 0.24*** 0.24*** 0.04 0.07

(0.07) (0.06) (0.07) (0.06)
β2 treatment effect on responsiveness 0.16*** 0.16** 0.10** 0.09*

(0.07) (0.07) (0.05) (0.05)

N 796 401×2 886 446×2

* p < 0.10, ** p < 0.05, *** p < 0.01

Note: Robust standard errors in parentheses

The regression results show that the treatment has a significant effect on responsive-
ness. On average, the treated student adjusts her prediction at least by an extra 0.15pp
upward for every 1pp she scores above her prediction on previous tests. In the case of
scoring above the expected average, we see that the control student does not respond to
this measure.17 However, as our treatment makes it salient that this measure contains
information, we see treated students react to it and, on average, raise their prediction
by an additional 0.10pp upwards for every 1pp she scores above her expected average.
These results are not dependent on controls; see Appendix for regression without controls.

Effect on Prediction Quality. We then investigate whether this increased responsive-
ness to information translates to better beliefs. The average absolute prediction error Γi5

for the control group was 17.35pp, and 15.31pp for the treated group. This difference
is statistically significant with a p-value of 0.015. Similarly, at a within-student level, the
pre-treated absolute prediction error was 16.22pp and dropped to 15.31pp for the treated
group; this difference, too, is statistically significant at a p-value of 0.06. To quantify the
significance, we use the Bayesian prediction mistakes (derived in the next section) and

17This makes sense in this institutional setting as they are never told the actual average.
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compute Λtreat = 1 −
1

|T |
∑

i∈T Γtreat
i5 −ΓB

i5
1

|T C |

∑
i/∈T Γcontrol

i5 −ΓB
i5

= 1 − 15.31−10.81
17.35−10.81

≈ 0.32 for the between-student
effect. Similarly, we obtain 0.18 for the within-student effect. Our findings suggest that
our treatment, which exogenously shocks belief in testing noise, reduced around 18%
and 32% of prediction mistakes relative to the Bayesian benchmark in the within and
between-student cases, respectively.

6 Structural Estimation

In this section, we analyze students’ updating patterns. We recover measures of non-
Bayesian bias as well as misspecification.

To analyze the updating patterns of a student, it is not sufficient to observe merely
how predictions change. Rather, it is necessary to estimate the actual statistical relation-
ship between grades. Only given this statistical informativeness can we estimate how a
Bayesian would update. Similarly, to study the effect of misspecification, it is not sufficient
to estimate the objective statistical informativeness. Additionally, we need to estimate
the perceived informativeness. These factors lead us to explicitly model the relationship
between grades to recover an objective and a subjective measure of informativeness.

To illustrate the issue at hand, consider a dataset containing the expected belief at a
time t, ĝit, and an updated expected belief, ĝit+1, at a future time. However, this type of
dataset does not allow the researcher to discuss the updating process as it 1) does not
document belief in terms of distribution and 2) does not document the signal or the signal
strength. In experimental settings, the researcher elicits Git and Git+1, which are prior
and posterior probability distributions. The researcher knows the signal’s informative-
ness, tells it to the subject, and can estimate how much the subject’s belief differs from a
Bayesian one. However, in our setting, we do not know the objective informativeness of
test scores, and more importantly, the students may have a different perception of this in-
formativeness. Therefore, our first contribution is to collect distributional belief data Gits
empirically. Then, to estimate non-Bayesian updating and misspecification, we leverage
our rich dataset to build a structural model. This allows us to 1) estimate the objective
informativeness of test grades and 2) estimate the students’ perceived informativeness of
the test grades via estimating their belief in the model’s parameters.

Model. We posit that the following general functional form can capture the grade-
generating function:

git = θi + ηit + ḡt + ϵit, ϵit ∼ N (0, σ2). (2)
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In particular, we posit that three sets of variables determine the grade. First, θi and
ηit are measures of the student’s skill. These are the objects the student ultimately faces
uncertainty about. We only assume that ηit may be correlated over time. In particular, θi
is an underlying fixed effect that remains constant throughout the course. Additionally,
ηit represents the student’s shock to skill in different periods, such as having more time to
study or finding this test’s material more familiar. Second, there is a class-wide test fixed
effect, which we assume is captured by the average test grade ḡt. In all of our models,
replacing ḡt with a test fixed effect makes no difference, but we take this interpretation
to calibrate the student’s perceived model. Finally, ϵit denotes exogenous testing noise,
which neither the student nor the researcher can explain, and our main interest is in the
variance σ2 of this noise and how student perception of this variance impacts updating.
We assume it is normally distributed and give some supporting evidence of this assump-
tion in the appendix.

Estimation of Objective Model. As we wish to understand the true informativeness
of grades, given this model, we estimate σ.

A natural first stab at estimating σ is via rewriting (2) as git − ḡt = θi + ηit + ϵit. This
groups all observables on the left-hand side, and we can estimate a simple fixed effects
model. The residual of the fixed effects model will be ηit + ϵit; therefore, the standard
deviation of these residuals will be an upper bound for σ. Doing this exercise yields 9.7
as an upper bound for σ. However, as this includes individual shocks, it may severely
overestimate the actual testing noise. It turns out we can do better given that ηits are
autocorrelated. We assume that ηit = β1ηit−1 + β2ηit−2 + νit follows an AR(2) process.18
This assumption gives us a clean identification of σ and disentangles ϵ’s variance from η’s
variance.19

Proposition 1. If ηit is a stationary AR(2) process, then σ is identified.20

We go over the result in Appendix B. The intuition is that by observing the variation of
the residual ηit+ϵit over time, we can estimate the variance of η (given theAR(2) functional
form) and separate it from σ. We recover σ = 3.75. To give the reader a general sense of the
estimate, the effect of testing noise, E[ϵit | ϵit ≥ 0], would be equal to 2.95. Therefore, the
expected change to your grade due to luck is around ±2.95, whereas the average student
believes it to be around ±9.03.

18We have 5 time periods, AR(1) and AR(2) offer similar results.
19We thank Xincheng Qiu and Guanbing Hong for pointing us in the right direction for this result.
20As we only have five periods total, we look at AR(2), but if we had more periods, then this result can be

extended for AR(p).
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We note that the objective model is itself misspecified, so the recovered testing noise
would be an upper bound. However, we are confident that the model nevertheless cap-
tures most of the variations and that η is correlated over time. First, running the naive
fixed effect regression (2) already returns an R2 of 0.8. Second, we note in our estimation
of β1 and β2 that they are statistically significantly different from 0 at any p-value. Third,
adding lagged residuals in (2) significantly raises the R2 to 0.87.

Estimation of Subjective Model. To retrieve a student’s subjective mental model to
quantify misspecification, we must retrieve, for each period, their uncertainty in their skill,
θ̂i+ η̂it, their belief in the noisiness of testing σ̂, and their belief in the class average ˆ̄gt. Their
belief in the class average is retrieved directly from our survey. To recover the first two
items, we collected pit(ĝit ≥ X), the quantile functions at values of X ∈ {50, 60, 70, 85}.
Using the cubic spline method of Bellemare et al. (2016), we recover a distribution Fit(ĝit)

which captures the student’s belief over her grades at time t. Their belief about the
distribution of their grade encapsulates both their uncertainty regarding skill and their
belief regarding the noisiness of the testing. From Fit, we compute Var(ĝit), the student’s
perceived variance in her grade. In particular, in our model, Var(ĝit) = Var(θi + ηit) + σ̂2

it.
We ask them directly about the proportion of mistakes in predicting their grades due to
exogenous luck, rit. As the expected squared error of the prediction is the variance, we
recover rit =

σ̂2
it

Var(ĝit)
. This, along with the normality assumption, allows us to recover a

belief distribution over θ̂i + η̂it.21 In particular, we recover the student’s belief regarding
her skill, with pdf hit, via

hit(θi + ηit = x) = p(ĝit = x+ ˆ̄git + ϵit ; σ̂it),

=

∫
fit(g)p(ϵit = g − x− ˆ̄git; σ̂it)dg,

=

∫
fit(g)

exp[−1
2
(g−

ˆ̄git−x
σ̂it

)2]

σ̂it

√
2π

dg.

To obtain hit, we estimated the integral above with a discrete sum of 200 values of g
drawn from Fit and estimated for every value of θi + ηit from −100 to 100 with a stepsize
of 1

2
. We find that students remain overly optimistic about their performance apart from

an initial adjustment.
Hence, the average student continues to expect to score about 7 points higher than the

21Note this assumes that the students correctly believe the noise to be normally distributed, and therefore,
our model will underestimate the effect of misspecification. Our analysis, therefore, always provides a lower
bound for the effect of misspecification.
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Table 4: Summary Statistics of Estimated Subjective Variables

Time Period
Variable t = 1 t = 2 t = 3 t = 4 t = 5

E[θi + ηit] 10.91 7.99 8.14 7.37 7.19
σ̂it 10.67 10.99 11.55 11.54 11.33

average. Similarly, we find students believe σ to be around 11, which implies an expected
effect of noise, E[ϵ | ϵ ≥ 0, σ = 11] = 8.78. We also elicited this measure by asking students
about their beliefs regarding the impact of good luck. Our directly elicited measure eit

has a similar value of 9.03. This gives us some confidence that these elicited values are
internally consistent. We find that only 10% of estimated σ across students and the five
tests are below the objectively estimated σ = 3.7, so the overestimation of the testing noise
is widespread.

Updating and Misspecification. We now consider misspecification and non-Bayesian
updating and decompose their effects on the prediction error. To illustrate our approach,
define first Γit = |ĝit − git| to be the absolute prediction error. Similarly, we define
ΓB
it = |ĝBit − git| and ΓM

it = |ĝMit − git| to be the absolute prediction error of a Bayesian
with the correct belief σ = 3.75 and that of a Bayesian with misspecified belief σ = σ̂it.
Therefore,

∑
i Γit − ΓB

it represents the reduction in the absolute prediction error from
Bayesian updating with correct specifications at time t, and

∑
i Γ

M
it − ΓB

it represents the
reduction in the absolute prediction error from correcting misspecification for a Bayesian
at time t. Therefore, Λt =

∑
i Γ

M
it −ΓB

it∑
i Γit−ΓB

it
is our measure of the proportion of prediction error

due to misspecification in the dataset at time t. If Λt = 1, then this means that all the
reduction in mistakes is due to misspecification, as adding Bayesian updating alone does
not reduce the aggregate mistake. By focusing on the prediction errors, we can consider a
tangible effect of non-Bayesian updating and misspecification without committing to any
particular model of non-Bayesian updating.

With the above methodology laid out, we now show how ΓM
it and ΓB

it are recovered.
Note first that recovering these is equivalent to recovering the posterior distribution of
ĝMit and ĝBit . We have already identified σ̂it, ˆ̄git, σ, and ḡt for the misspecified and correctly
specified models. So the uncertainty in updating depends on values of θi + ηit. Students
observe ηit; therefore, learning through past grade is only through learning about the
distribution of θi. However, we do not observe ηit as the researcher. We take a minimalistic
and misspecified approach and assume it is constant over time. This implies that our model
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is inherently misspecified. This implies the actually correctly specified Bayesian prediction
error should be lower than our estimates, and the same is true for our misspecified model’s
prediction error.

To simplify notations as we proceed, denote by κi = θi + ηit, note we recover at each
period the subject’s uncertainty regarding κi, which we denote by a pdf hit. This implies
that to recover the posterior distribution of ĝMit and ĝBit , we need to estimate the posterior
distribution of κi given the last period’s grade git−1. We derive the posteriors of κi in the
misspecified model as

qMit (κi = x|git−1, σ̂it, ˆ̄git) =
hit−1(x)p(git−1 = ˆ̄git−1 + x+ ϵit−1 | σ̂it)

fit−1(git−1)
,

=
hit−1(x)

fit−1(git−1)

exp[−1
2
(git−1−ˆ̄git−1−x

σ̂it
)2]

σ̂it

√
2π

.

And the correctly specified model has the following posteriors:

qBit (κi = x|git−1, σ, ḡt) =
hit−1(x)p(git−1 = ḡt−1 + x+ ϵit−1 | σ)

fit−1(git−1)
,

=
hit−1(x)

fit−1(git−1)

exp[−1
2
(git−1−ḡit−1−x

σ
)2]

σ
√
2π

.

Given this posterior regarding skill κi, we can derive the Bayesian posterior distribution
regarding grades of ĝMit and ĝBit . For the misspecified model, we obtain that

pMit (git|git−1) =

∫
qMit (κ|git−1, σ̂it, ḡt)p(ϵit = git − κ− ˆ̄git)dκ,

=

∫
qMit (κ|git−1, σ̂it, ḡt)

exp[−1
2
(git−

ˆ̄git−κ
σ̂it

)2]

σ̂it

√
2π

dκ.

For the correctly specified model, we have instead

pBit(git|git−1) =

∫
qBit (κ|git−1, σ, ḡt)p(ϵit = git − κ− ḡt)dκ,

=

∫
qBit (κ|git−1, σ, ḡt)

exp[−1
2
(git−ḡt−κ

σ
)2]

σ
√
2π

dκ.

Once we obtain the posterior distribution over grades, we take the expected grade for
each of these two models as the prediction to compute ΓM

it and ΓB
it . As a sanity check,

we show in the table below that
∑

i Γit >
∑

i Γ
M
it >

∑
i Γ

B
it holds on the aggregate, but of
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course, given the testing noise is random, it needs not hold for each individual.22 We can
reject at any statistical significance the equality between any pairs of Γit,Γ

M
it , and ΓB

it for
any of these periods.

Table 5: Prediction Errors - Actual, Misspecified and Bayesian

Test2 Test3 Test4 Test5

Γit 19.3 17.5 17.9 16.2
ΓM
it 17.0 12.6 14.0 13.9

ΓB
it 11.4 11.0 12.4 11.0

Λt 0.71 0.26 0.29 0.55

These gives us values of Λt equal to 0.71, 0.26, 0.29, and 0.55 respectively. We see that
misspecification has a greater impact on using the first test to make predictions and for
predicting the final exam. Throughout this paper, our methods provide a lower bound
for the effect of misspecification on updating, and here, we conclude that at least 25% of
prediction mistakes stem from misspecification concerns.

7 Summary

We showed that misspecification plays a key role in the failure of Bayesian updating
in a common and relevant empirical setting. This has important policy consequences as
we show that simple interventions to correct misspecification can significantly improve
beliefs. While one can never be sure of the external validity of our findings, we are
confident the present setting was not special in this phenomenon. Additionally, all of our
results suggest only a lower bound on the effect of misspecification in this setting.

Whereas a large literature classifies failure of Bayesian updating as due to errors or
mistakes in the updating process, we highlight it may instead be caused by mistakes in the
perception of the information. The present work presents evidence that misspecification
exists by collecting a unique rich dataset which additionally allows us to estimate its
impact. Additionally, we further support this hypothesis with causal evidence provided
by our RCT.

22The absolute prediction error is slightly different from our summary statistics table as we report here
only for subjects for whom we can compute ΓM

it , which requires completion of both surveys at time t and
t− 1 as well as having taken tests at both times.
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We provide descriptive evidence that prediction error is increasing in measures of
misspecification; implement a randomized experiment that generates exogenous shocks
to misspecification and find significant effects on prediction error and beliefs; and estimate
a structural model that quantifies the magnitude of this channel vis-a-vis other non-
misspecification related channels. Both our reduced form and structural results suggest a
conservative lower bound of 25% of prediction errors are due to misspecification.

References

Amelio, A. (2022). Cognitive Uncertainty and Overconfidence. ECONtribute Discussion
Papers Series 173, University of Bonn and University of Cologne, Germany.

Barron, K. (2021). Belief updating: does the ‘good-news, bad-news’ asymmetry extend to
purely financial domains? Experimental Economics 24, 31–58.

Bellemare, C., L. Bissonnette, and S. Kröger (2016). Simulating power of economic exper-
iments: the powerbbk package. Journal of the Economic Science Association 2, 157–168.

Bénabou, R. and J. Tirole (2004). Willpower and personal rules. Journal of Political Econ-
omy 112(4), 848–886.

Benjamin, D. J. (2019). Errors in probabilistic reasoning and judgment biases. Handbook of
Behavioral Economics: Applications and Foundations 1 2, 69–186.

Berk, R. H. (1966). Limiting behavior of posterior distributions when the model is incorrect.
The Annals of Mathematical Statistics 37(1), 51–58.

Bohren, J. A. and D. N. Hauser (2023). The Behavioral Foundations of Model Misspecification:
A Decomposition. Working Paper.

Buser, T., L. Gerhards, and J. Van Der Weele (2018). Responsiveness to feedback as a
personal trait. Journal of Risk and Uncertainty 56, 165–192.

Castillo, M. and S. Youn (2023). When biased beliefs lead to optimal action: An experi-
mental study. Working Paper.

Chiara, A. and S. Florian H. (2024). Weighting competing models.

Coutts, A. (2019). Good news and bad news are still news: Experimental evidence on
belief updating. Experimental Economics 22(2), 369–395.

23



Drobner, C. (2022). Motivated beliefs and anticipation of uncertainty resolution. American
Economic Review: Insights 4(1), 89–105.

Eil, D. and J. M. Rao (2011). The good news-bad news effect: asymmetric processing of
objective information about yourself. American Economic Journal: Microeconomics 3(2),
114–138.

Ertac, S. (2011). Does self-relevance affect information processing? experimental evidence
on the response to performance and non-performance feedback. Journal of Economic
Behavior & Organization 80(3), 532–545.

Frick, M., R. Iĳima, and Y. Ishii (2020). Misinterpreting others and the fragility of social
learning. Econometrica 88(6), 2281–2328.

Frick, M., R. Iĳima, and Y. Ishii (2023). Belief convergence under misspecified learning: A
martingale approach. Review of Economic Studies 90(2), 781–814.

Fudenberg, D., G. Lanzani, and P. Strack (2021). Limit points of endogenous misspecified
learning. Econometrica 89(3), 1065–1098.

Gonçalves, D., J. Libgober, and J. Willis (2024). Retractions: Updating from complex
information. Working Paper.

Grether, D. M. (1980). Bayes rule as a descriptive model: The representativeness heuristic.
Quarterly Journal of Economics 95(3), 537–557.

Guan, M. (2023). Choosing between information bundles.

Heidhues, P., B. Kőszegi, and P. Strack (2018). Unrealistic expectations and misguided
learning. Econometrica 86(4), 1159–1214.

Möbius, M. M., M. Niederle, P. Niehaus, and T. S. Rosenblat (2022). Managing self-
confidence: Theory and experimental evidence. Management Science 68(11), 7793–7817.

Oreopoulos, P. and U. Petronĳevic (2023). The promises and pitfalls of using (mostly)
low-touch coaching interventions to improve college student outcomes. Economic Jour-
nal 133(656), 3034–3070.

Stinebrickner, R. and T. R. Stinebrickner (2014). A major in science? initial beliefs and final
outcomes for college major and dropout. Review of Economic Studies 81(1), 426–472.

Wiswall, M. and B. Zafar (2015). Determinants of college major choice: Identification
using an information experiment. Review of Economic Studies 82(2), 791–824.

24



Zafar, B. (2011). How do college students form expectations? Journal of Labor Eco-
nomics 29(2), 301–348.

25



Appendix

A Randomized Control Trial

A.1 Heterogeneity Treatment Effect of Belief about Effect of Luck

Figure 6: Belief Regarding Effect of Good Luck on Grade by Timing
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Figure 7: Belief Regarding Effect of Good Luck on Grade by Gender

Figure 8: Belief Regarding Effect of Good Luck on Grade by International Status
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Figure 9: Belief Regarding Effect of Good Luck on Grade by First-Gen Status

A.2 Belief Regarding Effect of Luck on Prediction Mistakes

Figure 10: Belief Regarding Effect of Luck on Prediction Mistakes by Early Status
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Figure 11: Belief Regarding Effect of Luck on Prediction Mistakes by Gender

Figure 12: Belief Regarding Effect of Luck on Prediction Mistakes by International Status
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Figure 13: Belief Regarding Effect of Luck on Prediction Mistakes by First-Gen Status

A.3 Responsiveness to Information without Controls

We rerun regression (1) and (2) with only the β0 to β4 terms.

Table 6: Responsiveness to Information without Controls

Ψi Prediction Error Φi Average Deviation

Between Within Between Within

β1 control responsiveness 0.20*** 0.18*** 0.06 0.07*

(0.05) (0.05) (0.05) (0.04)
β2 treatment effect on responsiveness 0.14* 0.16** 0.10** 0.09*

(0.07) (0.08) (0.05) (0.05)

N 796 401×2 886 443×2

* p < 0.10, ** p < 0.05, *** p < 0.01

Note: Robust standard errors in parentheses
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B Structural Estimation

B.1 Objective Model

B.1.1 Proposition 1

Given that ηits are autocorrelated, we assume that ηit follow an AR(p) process. This
implies that ηit =

∑p
k=1 βkηit−k + νit (3) where νit captures a measure of the individual’s

time-dependent shock to ηit which previous periods’ values cannot linearly capture. We
take p = 2 as we have 5 time periods, this then gives us 5 unknowns (σ, ση, σν , β1, β2).

We obtain from the AR(p) formula that

σ2
η =

(1− β2)σ
2
ν

(1 + β2)(1− β1 − β2)(1 + β1 − β2)
(1)

as our first identifying equation.
We can recover V ar(ηit + ϵit) = 9.52 directly from our fixed effect regression where we

estimate git + ḡt = θi + ηit + ϵit. The residual of the regression is ηit + ϵit. This gives us our
second identifying equation that σ2 + σ2

η = 9.52.
Additionally, we can take the first difference of the residuals, ηit + ϵit − ηit−1 − ϵit−1.

The variance of this first difference is

V ar(ηit + ϵit − ηit−1 − ϵit−1) =
2− 2β2 − 2β1

1− β2

σ2
η + 2σ2.

We estimate the variance of the first difference to be 14.62, giving us another identifying
equation. We note this equality holds only if η is stationary, meaning |β2| < 1, β1 + β2 < 1

and β2 − β1 < 1, which we have to verify once these terms are recovered.
Therefore, we currently have three equations and 5 unknowns: (σ, ση, σν , β1, β2). One

way to recover the βs would be to estimate the AR(2) process. However, we do not observe
ηit, only ηit + ϵit. Therefore we can only run the following equation,

ηit + ϵit = β̂(ηit−1 + ϵit−1) + ξit, (4)

where ξit is a noise (note it is different from νit. Therefore, we can only recover a biased
estimate of βk. It can be however shown that asymptotically p-lim(β̂k) = βk

σ2
η

σ2
η+σ2 . we

recover that (β̂1, β̂2) = (−0.24.− 0.32). The coefficient is statistically significantly different
from 0 at any p-value with standard errors of 0.018 and 0.019, respectively. This gives us
the final two equations.
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We recover (σ, ση, σν , β1, β2) = (3.75, 8.72, 7.9,−0.28,−0.37). Note that β1 = −0.28 and
β2 = −0.37, so the recovered process is indeed stationary. Additionally, if instead we had
assumed an AR(2) process we would recover (σ, ση, σν , β) = (6.78, 6.79, 6.45,−0.31).

B.1.2 Residual Normality

Below we plot the residuals ηit + ϵit from a naive regression with just individual fixed
effects and the demeaned grade on the left handside.

Figure 14: Residuals from objective model
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C Survey Instructions

C.1 Introduction
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C.2 Effort Elicitation
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C.3 Belief Elicitation: Grades
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C.4 Belief Elicitation: Testing Noise
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C.5 Other Questions
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