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Abstract

In Jun Shao (1995), it is shown that a consistent bootstrap model selection (BMS)
procedure can be obtained by minimizing the bootstrap estimates of the prediction
error. However, for consistency, one must bootstrap a sample of size m which is less
than the original sample size of N . The method is consistent when m → ∞ and
m/N → 0. As the optimal choice of m depends on the true parameters, it cannot
be determined ex-ante, yet it greatly impacts the viability of the selection procedure.
Here, we present a two-step bootstrap model selection (2SBMS) process which avoids
the problem of having to select an optimal m.

1 Introduction

When the relationship between the dependent variable y and independent variables
x is linear, there are many model/variable selection procedures. For instance, the
Aike and Bayesian Information Criteria and their generalized counterparts(Aike 1970;
Schwarz 1978; Rao and Wu 1989). Different Cross-Validation methods and Lasso
techniques can also be considered(Allen 1974; Stone 1974; Tibshirani 1996). This paper
studies Jun Shao (1995)’s bootstrap model selection (BMS) which has the problem of
picking an optimal bootstrap sample size. We propose the two-step bootstrap model
selection (2SBMS), show that it retains consistency and show by simulation that it can
improve success rate significantly.

2 Bootstrap Model Selection

2.1 Linear Framework

Let y denote a vector of the variable of interest, and let X be a matrix of explanatory
variables. Suppose x has p many variables, which is independent of sample size. Then
we assume that X = (x1, .., xN )′ is full rank and:

µi = E(yi|xi) = x′iβ, var(yi|xi) = σ2 (1)

where β is a p vector of unknown parameters.
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We denote α to be a subset of {1, .., p} with size pα. Thus α is a potential model.
We say that a model α is correct if it contains all nonzero elements of β. We call the
smallest correct model the optimal model, denoted by α0. We let each model α be fit-
ted by minimizing the least squared error, and denote the estimated model parameter
by β̂α.

The efficiency of a model can be measured by the average loss:

LN (α) =
1

N

N∑
i=1

(µi − x′iαβ̂α)2 =
1

N
||µ− µ̂α||2 (2)

Suppose y = x′β + ε, then an useful way to rewrite LN (α) is:

LN (α) = ∆N (α) +
1

N
||Hαε||2 −

2

N
(µ−Hαµ)′ε (3)

Where ∆N (α) = 1
N ||µ−Hαµ||2 and Hα = Xα(X′αXα)′X′α

For any incorrect model ∆N (α) > 0 as N → ∞. It is straightforward then to
see that the optimal model minimizes LN (α) for N sufficiently large. Thus the suc-
cess of a model selection technique can be judged by success of selecting the optimal α0.

Denote the model selected by a selection technique α̂, then the selection technique
is called consistent if limN→∞P (α̂ = α0) = 1.

2.2 Jun Shao Bootstrap Model Selection

Jun Shao (1995) considers the prediction error of a model:

ΓN (α) = E
[ 1

N

N∑
i=1

(zi − x′iαβ̂α)2] = σ2 + LN (α) (4)

Where β̂α is derived using a sample of size N and used to make a prediction on
a new sample of zis and xis. Then minimizing the prediction error is the same as
minimizing the average loss and the optimal model has the lowest prediction error.

It is shown in Bunke and Droge (1984) that an almost unbiased estimator for
ΓN (α) can be found. This can be done using Efron (1982,1983)’s expected excess er-
ror. However, Shao shows that minimizing this estimate does not lead to a consistent
model selection technique. Rather, he proposes to minimize an estimate of E[Γm(α)],
for some m < N . This leads to a consistent model selection technique as m→∞ and
m
N → 0.

Let y∗, X∗α,m be a bootstrap draw by pairs of size m for model α. Then Jun
Shao proposes to estimate E[Γm(α)] by:

Γ̂N,m(α) = E∗
[ 1

N

N∑
i=1

(yi − xiαβ̃
∗
α,m)2

]
(5)
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where β̃∗α,m = (X∗α,m
′X∗α,m)−1X∗α,m

′y∗, the estimated βα from a bootstrap draw of size
m and E∗ is the expectation with respect to bootstrap sampling.

This procedure is highly accurate, even in small samples, for finding the true model
if one can pick the optimal m. However, as Shao and our simulation shows, large
discrepancies occur for different choices of m. In general, a large m is desirable for
ruling out models which underfit while a small m rules out better models which over-
fit. Therefore, without knowing how the optimal model is positioned among the set of
possible models, there is no a priori way of choosing m optimally.

Lastly, Jun Shao considers both bootstrapping pairs and residuals which lead to
very similar results. In the following, we consider only bootstrapping pairs because,
as Shao points out, unless there is a special structure in the xi (e.g. Hall 1990 when
xi=

i
N ), it is not clear how to bootstrap residual with bootstrap sample m < N .

3 Two Step Bootstrap Model Selection

We propose a two step method to overcome Shao’s difficulty. The difficulty was
mainly that an optimal m could not be picked ex ante without knowledge of distribu-
tion of models. If there were mostly models which overfit, we would like a small m
and vice versa. Our proposed technique is a two step method. In this first step, we
can eliminate incorrect models which underfit. In the second step, we can use Shao’s
technique with small m to rule out models which overfit, or in the linear case, simply
pick the simplest model.

In the following, we present the technique. Let us define the bootstrap sample
mean squared error, Km(α), as:

Km(α) = E∗
[ 1

m

m∑
i=1

(y∗i − x∗iαβ̃∗α,m)2
]

(6)

Let αp be the most overfit model, with subset of size p, we consider the following
ratio:

Rα(m) =
KN (α)−KN (αp)

Km(α)−Km(αp)
(7)

One can show that asymptotically, if α is an incorrect model then Rα(m) converges
to 1 as m and N grows large. However, if α is a correct model, Rα(m) converges to
2m
N+m . Proofs in appendix.

We could compute Rα(m) and reject models for which 2m
N+m is much closer to 1

than Rα(m). However, for 2m
N+m to be sufficiently different from 1 we would need to

pick a small m. Recall that in Shao’s original method, a smaller m does not allow one
to rule out efficiently models which underfit. Similarly, using Rα(m) with small m will
be inefficient for rejecting models which underfit. This can be intuitively seen in Figure
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Figure 1: Convergence of Bootstrap MSE

1. When m is small, even underfitting models will have rates of change proportional
to αp’s rate.

Thus we wish to pick a large m to maximize chances of ruling out underfitting
models. To do this, we note that Rα(m) can be estimated to be:

Rα(m) =
∆N (α)−ε′(Hα −Hαp)ε/N − (pα − p)σ2/N + op(1/N)

∆N (α)−ε′(Hα −Hαp
)ε/N − (pα − p)σ2/m+ op(1/m)

(8)

∆N (α) is 0 for a correct model, and converges to a constant as N → ∞ for an
incorrect model. This, coupled with the observation that the asymptotic expectation
of the second term is σ2(pα − p) leads to our claims earlier.

However, because the second term can be highly volatile and 2m
N+m is too close to

one for larger m, we consider instead R∗α(m):

R∗α(m) =
KN (α)−KN (αp)− (pα − p)σ̂2

α/N

Km(α)−Km(αp)− (pα − p)σ̂2
α/m

(9)

Where σ̂2
α is the estimated variance of error from the model α using the full original

sample by running an OLS regression and computing the residuals.

Asymptotically, R∗m(α) still converges to 1 for incorrect models while it will con-
verge to 3m

m+2N for correct models. We propose to pick m large, such as 0.7N and

4



reject models for which R∗α(m) > 1
2 ( 3m
m+2N + 1). Alternatively, one could use a double

bootstrap method to generate a confidence interval for R∗α(m) and reject models whose
interval lies above 3m

m+2N . However it becomes very computationally costly and from
our simulations, there is not much accuracy to be gained.

Finally, given the convergence results, the following holds:

Theorem: If lim infN→∞∆N (α) > 0 then the two step selection technique is
consistent.

Proof in Appendix.

4 Simulation Results

In the following we present some simulation results. We simulate 4 regressors
x1, x2, x3, x4 which are drawn from N (1, 4). We then generate all possible linear
combinations of the 4 regressors. Then y is generated by the true model as speci-
fied with ε ∼ N (0, 2), y = x′β + ε. Finally, we consider also a probit model where
y = 1{x′β + ε− 2.5 > 0}.

We simulate the BMS using 100 bootstrap draws. For the 2SBMS we draw 500
samples of size m = 0.7N and compute their R∗α(m) in the first step. We keep all
those for which R∗α(m) < 1

2 ( 3m
m+2N + 1) ≈ 0.889. Then we select the model which

minimizes the bootstrap prediction error for 100 draws of size m = 1
5 for the sec-

ond step. Thus our first step uses R∗α(m) to rule out some models, and then we use
Jun Shao’s BMS method in a second step for m = 1

5 to select among the remaining one.

We run three specifications. The three specification represent three scenarios. The
true model can be small, medium, or large compared to other considered models. When
the true model is small, as per specification 1, using a small m yields the best result.
However, when the true model is large, we see that using a small m is no longer bene-
ficial. Although picking an optimal m is non-trivial, Jun Shao’s method does perform
comparably to BIC, a common choice among researchers.

Table 1: Simulation Results, Linear Model, 1000 runs

True Model (β1, β2, β3, β4) BIC BMS (m=1
2N) BMS (m=1

5N) 2SBMS

(2, 0, 0, 0), N = 50 0.848 0.628 0.973 0.966
(2, 2, 0, 0), N = 100 0.921 0.699 0.969 0.956
(2, 25 ,

2
5 ,

1
3), N = 200 0.971 0.834 0.684 0.962

As we have argued, the 2SBMS has the advantage of not having to worry about
an optimal m. Given that the second step of the technique uses Jun Shao’s BMS for
m = 1

5 it is natural to compare the results with those of this BMS. We see that in
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Table 2: Simulation Results, Probit Model, 1000 runs

True Model (β1, β2, β3, β4) BIC BMS (m=1
2N) BMS (m=1

5N) 2SBMS

(1, 0, 0, 0), N = 50 0.833 0.356 0.856 0.895
(12 ,

1
2 , 0, 0), N = 100 0.937 0.091 0.707 0.912

(14 ,
1
4 ,

1
4 ,

1
4), N = 400 0.694 0.989 0.765 0.952

specification 1 and 2, where m = 1
5 performs very well, the 2SBMS performs slightly

worse but remains very comparable and above the BIC. However, in specification 3,
the 2SBMS outperforms the BMS for both small and large m. The explanation for the
two observation lies within the first step of the 2SBMS. First, there is a small chance
that the true model is rejected in the first step, this explains why the 2SBMS performs
just slightly worse in specification 1 and 2 compared to the BMS with an optimal m.
Second, the first step of the 2SBMS can eliminate underfitting models who have a
lower bootstrap prediction error. Thus preventing the BMS from making a mistake
in the second step. This explains why it can perform significantly better in the third
specification.

To give the reader an idea of the gains and losses of this first step process, we
recorded the number of times the true model was rejected in the first step for the first
and second specification. In the first specification 30 times out of 1000, the true model
was rejected in the first step, however, the 2SBMS only has 7 less correct guesses than
the BMS using the same m = 1

5N . In the second specification, 15 times out 1000 the
true model was rejected, but again the 2SBMS only has 7 less correct guesses. Thus
we see that the loss is relatively small, but as seen in the third specification, the gains
can be significant.

Lastly, we comment on the probit simulations. While we currently do not have
consistency results for 2SBMS under probit, we see that it performs well in simulation.
Furthermore, BMS’s problem with picking an optimal m is further aggravated in the
probit case, therefore making 2SBMS’s results even more comforting.

5 Conclusion

To summarize, we exploit the rate of change of the bootstrap MSE to improve upon
Shao’s bootstrap selection technique. Our first uses R∗α(m) to eliminate underfitting
models, and then runs Shao’s selection method using a small m to efficiently rule out
overfitting models.

The main observation we make is that the difference between the bootstrap MSE of
a correct model and the most overfitting model decreases at a rate that is close to m/N .
This is because both converge to σ2 at similar rates, thus the difference converges to 0
at a stable rate. However, an incorrect model will have a term ∆N (α) which is remains
constant, thus the differences converges to the same constant and R∗α(m) converges to 1.
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This observation allows us to construct the first step of the 2SBMS. We believe
that we have not fully exploited this observation as the selection method is still quite
primitive during the first stage. However, we believe that this method is very promising
as the early simulation results show. We also believe it to be generalizable to non-linear,
generalized linear and autoregression models in the same way as Jun Shao’s original
technique was.

Appendix

All results of the paper can be derived once the asymptotic convergence Km(α) is
known. Let E∗ and var∗ be the asymptotic expectation and variance.

First, we cite some results from Shao (1995):

1) var∗β̃
∗
α,N = (X′αXα)−1

∑N
i=1 xiαxiα(yi − x′iαβ̂α)2(X′αXα)−1[1 + op(1)]

= σ2(X′αXα)−1[1 + op(1)]

2) var∗β̃
∗
α,m ≈ N

mvar∗β̃
∗
α,N

3) β̃∗α,m − β̂α = (X∗α,m
′X∗α,m)−1

∑m
i=1 x

∗
iα(y∗i − x∗iα

′β̂α)

Then we derive the asymptotic convergence of Km(α) as:

Km(α) = E∗
[ 1

m

m∑
i=1

(y∗i − x∗iαβ̃
∗
α,m)2

]
= E∗

[ 1

m

m∑
i=1

(y∗i − x∗iαβ̂α)2
]

+ E∗
[ 1

m

m∑
i=1

(x∗iα
′(β̃∗α,m − β̂α)2)

]
− 2

m
E∗
[ m∑
i=1

(y∗i − x∗iαβ̂α)x∗iα
′(β̃∗α,m − β̂α)

]

We proceed by solving for each of the three terms:

1)E∗
[ 1

m

m∑
i=1

(y∗i − x∗iαβ̂α)2
]

=
1

N

N∑
i=1

(yi − x′iβ)2

=
1

N
[||ε||2 − ε′Hαε] + ∆N (α)
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2)E∗
[ 1

m

m∑
i=1

(x∗iα
′(β̃∗α,m − β̂α)2)

]
=

1

m
E∗[(β̃

∗
α,m − β̂α)′

m∑
i=1

x∗iαx
∗
iα
′(β̃∗α,m − β̂α)]

=
1

m
E∗[(β̃

∗
α,m − β̂α)′X∗α,m

′X∗α,m(β̃∗α,m − β̂α)]

=
1

m
E∗[(β̃

∗
α,m − β̂α)′

m

N
X′αXα(β̃∗α,m − β̂α)](1 + op(m))

=
1

N
Tr((X′αXα)var∗β̃

∗
α,m)

=
pασ

2

m
+ op(m)

3)
2

m
E∗
[ m∑
i=1

(y∗i − x∗iαβ̂α)x∗iα
′(β̃∗α,m − β̂α)] =

2

m
E∗[(β̃

∗
α,m − β̂α)′X∗α,m

′X∗α,m(β̃∗α,m − β̂α)]

=
2pασ

2

m
+ op(m) (from same procedure as above)

Putting those three together gives us Rα(m)’s asymptotic behavior, our results
follow from it along with the fact that ∆N (α) = 0 for a correct model as N →∞.

The asymptotic behavior of Rα(m) also gives us the theorem. We know already
that BMS is consistent, therefore, suffice to notice that as N →∞, the probability of
rejecting the optimal model in the first step goes to 0.
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