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Abstract
I study a decision-maker who chooses between objects, each associated with a sample

of signals. I axiomatically characterize the set of choices that are consistent with established
models of belief updating. A simple thought experiment yields a natural choice pattern that
lies outside this set. In particular, the effect of increasing sample size on choice cannot be
rationalized by these models. In a controlled experiment, 95% of subjects’ choices violate models
of belief updating. Using a novel incentive-compatible confidence elicitation mechanism, I find
confidence in correctly interpreting samples influences choice. As suggested by the thought
experiment, many subjects display a sample size neglect bias which is positively associated
with higher confidence.
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1 Introduction

Much of the information used in decision-making comes in the form of a sample of signals.
This ranges from comparing different Google Maps reviews before deciding on a restaurant to
gathering several referee reports before a verdict. Given the ubiquity of samples in inference, I
investigate how they impact choice behavior.

Previous work has focused on documenting non-Bayesian belief patterns and accommodating
them via different belief updating models.1 This paper considers instead choice behavior between
objects associated with signals. The main question I investigate is whether models of updating can
accommodate the observed choice patterns. The sheer number of non-Bayesian models makes this
a difficult query. To address this challenge, Theorem 1 axiomatically identifies the choice behavior
of an extremely general class of updating models. This enables direct testing experimentally
via revealed preference. I find that 95% of subjects display choice patterns that these models
cannot rationalize. My results further hint that the discrepancy lies in these models ruling out the
possibility that decision-makers (DM) may lack confidence in correctly interpreting information.

I illustrate the core behavioral violation of these models via a thought experiment. Alice, a
venture capitalist, is choosing to invest between two projects, A and B. Each project can either
succeed or fail. The outcomes of the projects are independent. Alice considers them equally likely
to succeed so she consults experts on these projects. Of the experts consulted for project A, 4
out of 5 predict its success. For project B, 1 out of 1 expert predicts success. Alice assumes the
experts’ predictions are identically and independently distributed (iid) conditional on the outcome
with some known likelihood of correctness. Suppose she later learns additionally that 45 experts
have analyzed A, and 36 predict success, making a total of 40 out of 50. For B, 9 additional experts
unanimously predict success, making a total of 10 out of 10. A justifiable choice might be to initially
pick project A when sample sizes are low, and switch to B when sample sizes are multiplied tenfold.
One might of course argue that the correct choices and when to switch depend on the likelihood
of prediction correctness. However, it turns out that irrespective of the likelihood’s value, this
switching pattern cannot occur for a very general class of belief-updating models. I formalize
this result theoretically via an axiomatic characterization, experimentally verify the robustness of
the thought experiment in a more extensive setting, and suggest additional relevant channels that
these models rule out which are important for choice.

My theoretical framework features a DM choosing between ex-ante identical objects for each
of which they observe a sample of signals. I consider the class of DM whose updating rule is
monotonic in the likelihood ratio of samples, computed under the assumption that signals are iid
with known likelihoods. Monotonicity is a weak assumption that holds universally for updating
rules, and both theoretical as well as experimental works commonly feature iid signals with known
likelihoods. Additionally, I do not restrict the DM to be expected utility maximizing. Theorem
1 shows that the choices of such DMs are axiomatically characterized by a separability axiom and

1See Benjamin (2019) for a survey.
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mild regularity axioms.2 The separability axiom states that if an object with sample x is chosen
over another with sample y, denoted by x ≻ y, then when any other sample z is added, an object
with sample x+ z will still be chosen over one with y + z. Separability says that adding the same
sample to two others does not reverse preference, which contradicts the thought experiment. If
x ≻ y, then separability implies x + x ≻ y + x, and y + x ≻ y + y. Transitivity then implies
x + x ≻ y + y. This process applied 10 times gives that x ≻ y implies 10 × x ≻ 10 × y, ruling out
the switching pattern from the thought experiment.

Almost all information processing models feature Bayesian updating in addition to the DM
facing no uncertainty regarding the signal likelihoods - falling under Theorem 1.3 Theorem 1
pins down the empirical content of these standard assumptions in this sampling environment.
Theorem 1 additionally enables direct experimental testing of these assumptions through choices
instead of having to elicit beliefs. This is crucial, as failure of separability may be due to failure
of probabilistic sophistication. In this case, belief elicitation methods are not incentive-compatible
and the elicited measures do not have a clear interpretation.

I test separability through a controlled experiment where participants choose between boxes
filled with colored balls. Without knowing each box’s type (good or bad), which affects ball
distribution, subjects make choices based on observed draws, aiming for a bonus for choosing a
"good" box. This setup reflects the thought experiment and the theoretical set-up, with projects as
boxes and expert predictions as balls. I induce from choices, for each subject, a set of indifference
curves. I show that choices satisfying separability must have a linear representation, which is
reflected in indifference curves being parallel straight lines. By analyzing these curves’ angles and
their standard deviations, I test for parallelism, where a near-zero standard deviation indicates
separability holds.4 I find that the average standard deviation of angles is 27 degrees. Furthermore,
only 5% of subjects have a standard deviation of less or equal to 10 degrees. These results show
that updating models satisfying separability are systematically rejected.

These findings suggest that updating fails due to either failure of monotonicity or subjective
uncertainty regarding signal likelihoods. Two streams of literature have proposed the second
explanation. Recent works in ambiguity 5 and cognitive imprecision6 show that subjective uncer-
tainty regarding the data generating process can lead to dynamics very different from the standard
paradigm. These works model such uncertainties explicitly and show that choice behavior may be
consistent with the predictions of particular models. My results instead reject, given monotonicity,
any model which does not feature this subjective uncertainty. Thus offering evidence for the exis-
tence as well as the relevance of this channel without committing to a particular way of modeling
this uncertainty. The reader may find it helpful to view my results through the lens of Ellsberg

2The mild regularity axioms are completeness, transitivity, and continuity.
3The large majority of works in information design, information acquisition, and social learning fall under this

category.
4Since signal numbers are discrete, it is not necessarily precisely 0.
5Epstein and Schneider (2007); Epstein and Halevy (2019, 2023); Ngangoué (2021); Kellner et al. (2022); Liang (2023);

Shishkin and Ortoleva (2023)
6Steiner and Stewart (2016); Woodford (2020); Khaw et al. (2021); Frydman and Jin (2022); Enke and Graeber (2023)
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(1961), which shows that DMs are not probabilistically sophisticated. Ellsberg (1961) is celebrated
because it gives this previously elusive mental phenomenon its behavioral and empirical counter-
part. I make an analogous argument and give a behavioral pattern that rejects models without
uncertainty regarding signal interpretation.

The thought experiment offers insights as to why separability rules out uncertainty in signal
interpretation. Consider again the thought experiment: Should Alice be more confident in her
first choice of 4 out of 5 over 1 out of 1 or her second choice of 10 out of 10 over 40 out of 50?
By "confident", I refer to Alice’s confidence in selecting the project with the highest probability
of success. This directly ties to her confidence in correctly interpreting signals. One could argue
that as the sample sizes grow, Alice learns to interpret predictions better and becomes more
confident. Therefore, it might be natural to say that Alice is more confident in her second choice.
This translates to being more confident in having interpreted signals correctly in the second choice.
However, if signal likelihoods are known and iid, then signal interpretation should be independent
of the observed sample. In other words, separability implies a mental model where the DM already
knows the signal informativeness and rules out the role of confidence in choice. I further highlight
two features of the choice process in the thought experiment. First, Alice chose solely based on
sample characteristics: sample sizes and proportions of success. In particular, her choices were
made without referring to any information regarding signal likelihoods. Second, as the sample
size grows, one is more comfortable neglecting the sample size and choosing by the proportion
of success, which occurs in parallel to one’s increasing confidence. Suggesting one neglects the
sample size when one is confident in having seen a high enough sample size.

Previous works have also found non-Bayesian attitudes towards size and proportion. Griffin
and Tversky (1992) finds that subjects underweight the sample size via belief elicitation, they
suggest that the bias is constant. The thought experiment suggests that the channel is more
nuanced. In particular, the weight given to the sample size is high when the samples have small
sizes and decreases as more samples are observed. A model with constant bias, as they suggest,
cannot account for the thought experiment.

To test these features of choice and the relevance of confidence, I structured my experiment
with three distinct between-subject treatments, each involving a different information structure.
This allows me to test whether subjects refer to the objective likelihoods or only to sample sizes
and proportions. Additionally, I introduce and implement a novel incentive-compatible confidence
elicitation mechanism. This enables me to test whether neglecting the sample size is associated
with higher confidence. As per my pre-registration, I run my analysis on the full sample and
a sub-sample of subjects who satisfy a weak coherence condition. This sub-sample of subjects
displays a greater understanding of the experiment, allowing me to check the robustness of results
and ensure results are not driven by confusion and inattention.

My three treatments differ in the information structure provided to subjects. Two of the
three information structures have iid signals with known but different likelihoods, while the third
information structure features uncertain signal likelihoods. Subjects are told explicitly about these
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information structures. These differences allow me to test whether the likelihood matters and
whether subjects ignore the likelihood and choose entirely based on sample characteristics. I find
that the information structure has virtually no effect on the subjects’ choices - almost all subjects
violate separability, and their choices are identical under all three treatments. This aligns with
the thought experiment and suggests that subjects ignore the information structure and choose
based on sample characteristics instead. When looking at the sub-sample, I find the same result,
confirming that this is not driven by confusion or the complexity of the environment but rather
the outcome of intentional choice.

Experimental work in belief updating has traditionally given subjects the objective information
structure (Grether (1980); Coutts (2019); Barron (2021); Möbius et al. (2022)). Belief updating biases
are typically then estimated assuming that subjects form a correct subjective mental model of this
objective information structure. In this sampling environment, subjects are strongly insensitive
to the objectively given information structures. This suggests the link between objective and
subjective structures is likely much looser than previously thought. This has important implications
as Shmaya and Yariv (2016) shows that even Bayesian updating can seldom be rejected without
assumptions on the mental subjective information structure. Similarly, my results show that given
the standard assumptions of these models, monotonicity, and iid signals with known likelihoods,
every updating model is rejected. Taken together, these results suggest that while the literature
has focused on updating rules, we need to understand better the subjective mental model of the
information structure to explain choice behavior.

If subjects’ choice is influenced by potential uncertainty in signal interpretation, then this im-
plies they might not be confident in their beliefs. To study this channel, one needs to measure
confidence in beliefs, a second-order epistemic object. Several strands of the literature attempt
to measure confidence: ambiguity, incomplete preferences, dynamic beliefs, and cognitive impre-
cision. The elicitation methods proposed are however typically either not incentive-compatible
(Enke and Graeber (2023); Nielsen and Rigotti (2023)), or only incentive-compatible under strong
assumptions (Karni (2018, 2020); Chambers and Lambert (2021)), or require restrictive environ-
ments (Coffman (2014); Halevy et al. (2023)).7 I propose a confidence elicitation method that is
simple for subjects to understand, incentive-compatible for a large class of theories, and also has
low implementation cost. I define confidence as knowledge of the correct action. This mental
phenomenon, under general theories, is shown to be tied behaviorally to the willingness to pay for
information. This allows me to measure the lack of confidence by the willingness to pay to learn
the correct action. I show that asking just one additional and simple-to-understand binary choice
question after any standard choice or belief elicitation task is sufficient. The only requirement is
that there is a correct choice (subjective or objective) given the subject’s information. This is a
very mild requirement, as confidence is typically measured as being confident in having made the
correct choice. This measure is also shown to be highly correlated to an unincentivized measure.

The thought experiment suggests that sample size neglect, defined as choosing entirely based

7The issue has also been explored empirically, see Giustinelli et al. (2022) and Kerwin and Pandey (2023).
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on sample proportion, is a sign of confidence. I first document that 39% and 61% of choices in
my full sample and sub-sample display sample size neglect, respectively. This is in line with the
intuition of the thought experiment, as the sub-sample is shown to be more confident and more
likely to neglect the sample size. Moreover, I examine whether displaying sample size neglect is
correlated with the choice to incur costly learning. I find a subject is 1.55 times more likely to
incur costly learning on choices that do not display sample size neglect. The effect is sharper for
the subsample and amongst choices involving larger samples, with subjects being 2.4 times more
likely to incur learning when not displaying sample size neglect. Therefore, as suggested by the
thought experiment, displaying sample size neglect is associated with being less likely to opt to
learn and higher confidence.

I also offer a theoretical foundation for the observed behaviors and the channels documented in
the thought experiment. In the real world, DMs frequently encounter uncertainty regarding signal
likelihood. For example, one may be uncertain about the harshness of reviewers or the accuracy
of experts. As this likelihood is unknown but remains fixed as more signals are gathered, it is
possible to learn about it from samples. Therefore, a DM who observes only a few signals is more
uncertain, and hence less confident, of her posterior belief. The DM can update her belief about
this uncertainty, and it dissipates as the sample size grows. This is reflected by a higher confidence
when facing large samples. However, on many occasions, the DM does not even know how to
update or form beliefs about the uncertainty. I show that, in this case, under a mild monotonicity
condition, no matter what the uncertainty is, sample size neglect is asymptotically optimal. Hence
giving a plausible explanation as to why subjects can confidently ignore the likelihoods and choose
based on sample proportion.

Organization. The rest of the paper is organized as follows. Section 2 presents a thought ex-
periment that illustrates an intuitive behavior that conflicts with conventional models. Section 3
establishes the environment, the axioms, and the representation result. I also present the con-
fidence elicitation mechanism in Section 3. Section 4 gives an exposition of the experimental
design. Section 5 presents the experimental findings. Section 6 shows likelihood uncertainty can
accommodate the observed behaviors. Section 7 concludes the paper.

2 Thought Experiment

Alice, a venture capitalist, has two potential projects, A and B that she can invest in. She has
only enough funds to invest in one of them. Both projects promise that they can succeed in creating
an industry-leading technology. The technologies are from different fields. Therefore, the success
of one project is independent of the other. Ex-ante Alice believes both are equally likely to succeed
and only cares about whether they succeed. To make a better decision, Alice reaches out to experts
in these fields. Experts give out predictions for whether a project will succeed. Alice can assume
these experts are predicting independently without any hidden agenda. Therefore, signals are iid
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conditional on the outcome of the projects. For project A, 4 out of 5 experts predict it will succeed.
For project B, only one expert has gotten back to Alice, but they predict success. How should Alice
choose? A natural and justifiable choice would be project A1, as a single expert’s prediction for B
may be deemed insufficient. Now suppose Alice observes some additional signals later. Project A
now has 40 out of 50 experts predicting its success, and B now has 10 out of 10 experts predicting its
success. Should Alice now be willing to switch to investing in B? If not, what about 400 out of 500
versus 100 out of 100? It may seem natural once the sample sizes grow enough, that Alice should
be comfortable with investing in B. Furthermore, should Alice be more confident in the correctness
of the first choice or the second? By correct, I mean not in selecting a successful project but having
chosen the project with the highest probability of success given the predictions. I suspect one may
find it acceptable to be more confident with the second choice. And introspection suggests that as
the sample sizes grow, our willingness to focus on the sample proportion and our confidence both
increase.

If Alice did choose A initially and B later on, then her behavior is inconsistent with a large
and general class of models. In the following, I illustrate that a Bayesian EU DM cannot generate
such behavior. The theory section shows it holds for a much broader class of DMs. Suppose Alice
believes that projects will succeed with probability p ∈ (0, 1); recall ex-ante Alice considers them
equally likely to succeed. Suppose when a project, A or B, does succeed; Alice believes each expert
has a probability ca for project A and cb for project B of correctly predicting success. When a project
does fail, this probability, which is now a false positive, is da for project A and db for project B. If
Alice is Bayesian, Alice will choose whichever project has a higher posterior probability of success
given the observed sample of opinions. Then one can derive the condition for Alice to prefer A1
over B1 in terms of posteriors that

Pr(A succeeds | 4 out of 5) > Pr(B succeeds | 1 out of 1),

and because states are binary, the following regarding posterior ratios holds

Pr(A succeeds | 4 out of 5)
Pr(A fails | 4 out of 5) >

Pr(B succeeds | 1 out of 1)
Pr(B fails | 1 out of 1) .

The denominators of the Bayesian updating formula cancel out to obtain that

p

1− p

Pr(4 out of 5 | A succeeds)
Pr(4 out of 5 | A fails) >

p

1− p

Pr(1 out of 1 | B succeeds)
Pr(1 out of 1 | B fails) .

Canceling and rewriting in terms of signal likelihoods given the iid assumption gives

ca
4(1− ca)

da
4(1− da)

>
cb
db

.

And by a similar calculation, if Alice chooses to pick B over A after collecting more information
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then it must be that the following holds

Pr(A succeeds | 40 out of 50) < Pr(B succeeds | 10 out of 10).

Which implies by an identical sequence of transformations that

ca
40(1− ca)

10

da
40(1− dd)10

<
cb

10

db
10 .

Note that the inequalities from the second decision are precisely that of the first taken to the
power of 10. Therefore, if Alice’s belief regarding the likelihoods, ca, cb, da, and db remained
constant in the two decisions, her pattern cannot be rationalized as that of a Bayesian DM. While
Bayesian updating may seem to be key, note we only required posteriors to be monotonic in the
samples’ likelihood ratios.

Before proceeding, two complementary features of the choice process should be highlighted
for future sections. The first feature is that a sample with a small size is discounted potentially
because it is perceived as noisy, and when the sample size increases, this concern disappears.
This is precisely where confidence matters and where the iid assumption is violated. Under the
iid assumption, with known likelihoods, the signal likelihoods are fixed and independent of the
observed sample. And, therefore, leaves no room for their interpretation to change. We see instead
that confidence increases in sample size. Further, the willingness to neglect the sample size occurs
when one is confident in having observed a sufficiently large sample. The second feature is that,
upon introspection and irrespective of the actual choices, one may realize that one was able to
make these choices without knowledge of the signal likelihoods. Instead, one may have compared
the sample characteristics. Taking this logic one step further, it suggests that one’s choices may not
be dependent on what one is told about signal likelihoods. I test the relevance of these features for
decision-making experimentally and find evidence in favor of such a choice process. I also show
theoretically that if the DM faces uncertainty regarding the likelihoods, then these findings are
rationalized.

3 Theory

The DM chooses between two objects. Objects are assumed to be ex-ante identical and of
binary quality, denoted by g and b for good and bad qualities respectively. For each object, the
DM believes it has a probability p of being good. If the object chosen is of good quality, then she
obtains a payoff of 1. If the object is bad, then she obtains instead a payoff of 0. For each object, the
DM observes a sample of signals. Each signal can take on a finite set of types t ∈ T . A sample of
signals is a T -dimensional vector with natural numbers as entries. Denote an object’s sample by
s = (s1, ... , sT ) ∈ NT

0 , where st denotes the number of signals of type t in the object’s sample. For
example, each object could be a project, and a sample could be a set of predictions.
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I study empirical content of models of updating and take the primitive of my framework to be
a preference relation ⪰ defined on NT

0 × NT
0 . Therefore, s1 ⪰ s2 means to choose an object with

sample s1 over another object with sample s2. This is taken to imply that the DM considers s1 to be
better evidence of an object being good than s2. I now describe mental representations of a wide
class of models of belief updating. I then offer their axiomatic characterization in terms of choice
behavior between objects with samples.

In models of updating, the DM’s belief regarding samples is based on her belief regarding
individual signal realizations. Her belief regarding signals is described by a pair of likelihoods
σg = (σg,1, ..., σg,T ) and σb = (σb,1, ..., σb,T ). Likelihoods σg and σb are her beliefs about the
distribution over signal types conditional on the object being good and bad, respectively. For
example, σg,t denotes the probability a signal is of type t conditional on the object being good. I
assume only that for all t σg,t ∈ (0, 1) and σb,t ∈ (0, 1), a full support condition.8 I highlight that
this is a very weak condition on beliefs as σs do not have to be correct, therefore allowing for model
misspecification. Furthermore, I do not impose that these must add up to one, thus allowing for
incoherent beliefs.

Given σg and σb, the DM can compute using the independence condition, for every sample, a

likelihood ratio. For any sample s, its likelihood ratio is L(s ; σg, σb) = Pr(s | g)
Pr(s | b) =

∏T
t=1 σ

st

g,t∏T
t=1 σ

st
b,t

. The

DM uses an updating rule to update a posterior belief for each sample. I consider updating rules
which are strictly monotonic in the likelihood ratio. While this seems like a strong assumption, it
is satisfied by a wide range of non-Bayesian updating rules. See the online appendix for a more
detailed discussion.9

Finally, once the DM has obtained a posterior belief for each object given its sample, she chooses
the one with a higher posterior probability of being good. In this binary scenario, this amounts
to any representation of choice under risk that satisfies FOSD. Therefore, non-EU theories such
as rank-dependent EU or cumulative prospect theory are allowed. I note that often, a decision
theorist wants to distinguish between different theories, which necessitates a large state space. My
goal here is to investigate common behavioral implications of a general class of theories. Therefore,
I look at the binary state space where these theories have identical predictions.

If a DM chooses according to the above, I say they have a likelihood ratio representation.

Definition 1. A preference relation ⪰ has a likelihood ratio representation if there exist σg and σb such that
for any samples s1 and s2,

s1 ⪰ s2 if and only if L(s1 ; σg, σb) ≥ L(s2 ; σg, σb).

8This condition is helpful for cosmetic purposes in the statement of the theorem and can be relaxed. It is neither
substantive nor necessary for any results.

9To highlight why it is an intuitive assumption, consider the following scenario. The DM initially chose an object
with sample s1 over another with sample s2. Then she learns that the signal-generating process is such that there is
an additional signal type that she did not anticipate existed. This unanticipated signal type did not occur in either s1
or s2. She also learns that this additional signal type is equally likely for both good and bad objects. Therefore, this
unanticipated and unobserved signal type is pure noise. Therefore, she should not change her choice. A violation of
this assumption would imply that there are scenarios like the above where she would change her choice.
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The likelihood ratio representation builds in two main assumptions: the updating rule being
strictly increasing in the likelihood ratio, and that it is computed as if signals are iid with known
likelihoods.10 It turns out that such a representation has a simple axiomatization that is parallel
to the EU representation of choice under risk. I introduce first the mixture operation and then my
axioms.

Definition 2. For α ∈ [0, 1], samples s1 and s2, if αs1 ∈ NT
0 and (1 − α)s2 ∈ NT

0 , then the mixture
s1αs2 = αs1 + (1− α)s2.

Therefore s1αs2 denotes the sample that is obtained by adding α proportion of s1 to (1 − α)

proportion of s2. Because samples are vectors with natural numbers as entries, I restrict this
definition to whenever both proportions are themselves samples. Given this definition, I define
the axioms.

Axiom 1 (Separability). For all s1 and s2, if s1 ⪰ s2 then for any s3, s1 + s3 ⪰ s2 + s3.

Axiom 2 (Mixture Independence). For all s1 and s2, if s1 ⪰ s2 then ∀α ∈ (0, 1) and for any s3,
s1αs3 ⪰ s2αs3 whenever αs1, αs2, (1− α)s3 ∈ NT

0 .

Axiom 3 (Continuity). For all s1, s2 and s3, the sets {α | ∃κ such that ακs1, (1− α)κs2, κs3 ∈ NT
0 , and

(κs1)α(κs2) ⪰ κs3} and {α | ∃κ such that ακs1, (1 − α)κs2, κs3 ∈ NT
0 , and (κs1)α(κs2) ⪯ κs3} are

closed in Q ∩ [0, 1].

Separability links a DM’s preference over samples to the marginal effect of additional samples.
In particular, it says that if an object with sample s1 is chosen over another object with s2, then
for any sample s3, the DM prefers an object with sample s1 + s3 to one with s2 + s3. Mixture
independence is stated as under risk, with the caveat that the parts being mixed must be themselves
samples as per the definition of the mixture operation. Finally, continuity is akin to the standard
mixture continuity axiom under risk. The only differences are again due to the discreteness of the
environment. First, as mixture proportion αs are rational numbers, the closure requirement is on
the rationals as a subspace of [0, 1]. Second, it is necessary to be able to multiply the sample sizes
by arbitrarily large κ to find all the rationals that satisfy the condition.

I now present the representation theorem. Theorem 1 links the axioms to the likelihood ratio
representation implied by models of updating and operationalizes it.

Theorem 1. The following are equivalent:

1. The relation ⪰ has a likelihood ratio representation.

2. The relation ⪰ is transitive, complete, separable, and continuous.

10I note also that it assumes the DM’s mental model of the states is binary - which experimental researchers can
assume safely but seldom verify. I show that relaxing this assumption while preserving the first two, yields behavioral
patterns equivalent to relaxing signal likelihood being known. Therefore, as both relaxations have the same empirical
content, it is up to the researcher to exercise his best judgment. In my experimental setting, it is safe to assume the
mental state is binary given that subjects are explicitly told so. I show this in the Online Appendix.
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3. The relation ⪰ is transitive, complete, mixture independent, and continuous.

4. There exists a set {ut}Tt=1, and for all s1 and s2 we have

s1 ⪰ s2 ⇔
T∑
t=1

uts
t
1 ≥

T∑
t=1

uts
t
2.

The proof can be found in Appendix A.1. Theorem 1 links a broad class of models of updating
with their empirical implications via the second statement. In particular, these models have
choices satisfying separability. Therefore, the behavior exhibited in the thought experiment cannot
be accommodated by updating rules that are strictly monotonic in the likelihood ratio, given
that signals are perceived to be iid with known likelihoods. The third statement establishes the
equivalence of separability and mixture independence. This gives a hint of the proof strategy. If the
set of samples was on RT

0 , then 3) ⇔ 4) is immediate by the Mixture Space Theorem from Herstein
and Milnor (1953). My proof proceeds by extending the domain of ⪰ to QT

0 ×QT
0 , allowing signal

numbers to be rational numbers. This extension is carried out using the mixture operation. From
there a generalization of the Mixture Space Theorem from Shepherdson (1980) can be applied.

Theorem 1 implies that a wide class of models of updating imply choice behaviors that have
a linear utility representation. Therefore, these models predict indifference curves, drawn in the
space of samples, must be parallel straight lines. If the signals have binary types, like in the
thought experiment, then the space of samples can be illustrated in Figure 1. The x-axis and y-axis
denote the number of bad and good signals, respectively. Therefore, any sample is a point on the
plane. For graphical convenience, I showcase a choice pattern that is qualitatively identical but
numerically different from the thought experiment. In Figure 1, A1 = (1, 4), is initially chosen
over B1 = (0, 1). Then, the indifference curve through B1 must lie below A1 in the blue region
but never on the dotted line if the preference is strict. Similarly, the indifference curve through
B2 = (0, 4), must lie above A2 = (4, 16) in the red region if the DM switches when sample sizes
are multiplied by 4. Note then the only way for indifference curves to be parallel is if they both lie
on the dotted line. Therefore the thought experiment conflicts with any model with a likelihood
ratio representation. In my experiment, I collect precisely such indifference curves and show that
they are indeed not parallel straight lines but instead, rays that fan out as the thought experiment
suggests.

I test models of updating characterized by Theorem 1 in the actual experiment. I note however
that the thought experiment conflicts with a wider class of models. In particular, Theorem 1
holds for models satisfying four axioms. Whereas separability and transitivity are enough to
conflict with the thought experiment. The theorem characterizes updating rules which are strictly
monotonic in the likelihood ratio. However, weakly monotonic updating rules, such as Coarse
Bayesian Updating (Jakobsen (2021)), are violated by the thought experiment even if they do not
fall under Theorem 1. Table 13 summarizes known updating rules and their relationship with the
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Figure 1: Indifference Curves Compatible with Thought Experiment

Table 1: Updating Rules and Relation with Actual and Thought Experiments

Updating Rules Rejected By Literature
Actual Exp. Thought Exp.

Bayesian Updating Yes Yes Bayes and Price (1763)
Grether Updating Yes Yes Grether (1980); Möbius et al. (2022)
Weighted Bayesian Yes Yes Epstein et al. (2010); Kovach (2021)
Divisible Updating Yes Yes Cripps (2018)
Coarse Bayesian No Yes Jakobsen (2021)
Confirmatory Bias Yes Yes Rabin and Schrag (1999)
Size/Proportion Model No Yes Griffin and Tversky (1992)
Inertial Updating No No Dominiak et al. (2023)

actual experiment and the thought experiment.11

3.1 Confidence Elicitation

In this subsection, I introduce a confidence elicitation mechanism. The reader may skip to
Section 4 where I show the experimental implementation of this mechanism. Additionally, my
presentation here is restricted to confidence elicitation as it pertains to inference from samples. I
generalize the framework and the mechanism for a wider class of choices in Appendix A.2.

The thought experiment hints that confidence in inference may be relevant for choice. However,
according to earlier models of updating, the DM, given a sample, assigns an exact number to the
posterior probability of an object being good. Then, when choosing between two objects, the DM

11The online appendix goes over each of these rules in detail.
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knows with certainty which has a higher (subjective) probability of being good. These models
therefore leave no room for the DM to have uncertainty about which object has a higher probability
of being good. Therefore, to measure confidence and its relationship with choice, I first allow DMs
to possess uncertainty regarding posteriors. This allows me to define lack of confidence as not
knowing with certainty which object has a higher probability of being good. And I propose a
confidence elicitation mechanism based on this definition.

Consider a DM who chooses between two objects with samples s1 and s2 respectively. To
define confidence, I assume that the DM may be uncertain about the values of Pr(g|s1) and
Pr(g|s2). I consider two common representations of this type of uncertainty. First, the DM could
have a probability distribution P over values of Pr(g|s1) and Pr(g|s2). They then evaluate objects
and their second-order distributions using some decision rule, examples include expected utility,
smooth ambiguity (Klibanoff et al. (2005)), as well second-order forms of non-EU theories such
as Segal (1990). Second, the DM may instead consider sets of probabilities Π1,Π2 as possible
for posteriors Pr(g|s1) and Pr(g|s2). They then evaluate objects using a suitable decision rule
such as maxmin EU (Gilboa and Schmeidler (1989)), or variational preferences (Maccheroni et al.
(2006)). For both types of representations, I say the DM is fully confident in choosing an object
with sample s1 over one with sample s2 if they believe with certainty that Pr(g|s1) ≥ Pr(g|s2).
Formally, P (Pr(g|s1) ≥ Pr(g|s2)) = 1 andminΠ1 ≥ maxΠ2 for the first and second class of models,
respectively. Full confidence implies the DM assigns probability 1 to the object with sample s1

having a higher probability of being good. Similarly, I say the DM lacks confidence when the above
fails. My approach here is therefore general and incentive compatibility of my mechanism holds
for a wide range of theories of confidence.

Suppose the DM is fully confident, then she has no instrumental value in learning whether
Pr(g|s1) ≥ Pr(g|s2) is true as she already knows it. For any of the theories above, having full
confidence implies zero value of information. Therefore, strictly positive willingness to pay to
learn the correct action only occurs under lack of confidence. Using this channel, I consider the
following elicitation mechanism:

• The subject is asked to choose between two objects with samples s1, s2 and a number δ ∈ [0, 1].
Her payoff is determined as:

1. With probability δ2, they get a bad object.

2. With probability 1− δ, they get the object they chose.

3. With probability (1 − δ)δ, they learn the object with the highest probability of being
good, given s1 and s2, and can choose again.

Therefore, this mechanism gives the DM a chance to learn which object is statistically more
likely to be good at a cost. Any theory of confidence, second-order probabilities, or sets of
probabilities, assigns values V2 and V3 for the second and third options such that V2 ≤ V3. Note
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a choice of δ yields a lottery over three outcomes: a bad object with value V1 < V2, an outcome
with value V2, and an outcome with value V3. Choosing δ = 0 yields a lottery with a guaranteed
value of V2. Therefore if the DM’s evaluation of the risky option generated by the mechanism
satisfies FOSD, then the DM chooses δ > 0 only if V3 > V2. If one assumes expected utility over
the uncertainty generated by δ and normalizes the value of a bad object to 0, one can solve for the
optimal δ∗ = 1

2
V3−V2
V2

. Therefore, choosing δ > 0 implies a strictly positive instrumental value of
information. Note that if the DM assigns P (Pr(g|s1) ≥ Pr(g|s2)) = 1 or minΠ1 ≥ maxΠ2 then
under any conventional updating rule for theories confidence, it must be that V2 = V3. Therefore,
δ > 0 implies the DM lacks confidence.

Proposition 1. Suppose the DM’s attitude regarding the lottery induced by the mechanism satisfies strict
FOSD then δ > 0 only if the DM lacks confidence.

Proof in Appendix .

The presented mechanism requires the existence of an objectively correct choice that can be
credibly signaled. However, one can get around this by providing a signal that the DM considers
correlated with what they consider subjectively correct. For instance, in complex lottery choices,
the expected value, and in dictator games, the average of other players’ choices. If the non-
instrumental value of information can be ruled out, then a DM chooses to acquire the signal only
if they lack confidence and perceive the signal as informative.

The reader may also worry about the complexity of the lottery induced by the mechanism, as
complexity has been shown to induce violations of FOSD. I note that this only makes the δ = 0

case more attractive. Therefore this concern does not change the fact that δ > 0 implies lack of
confidence. This argument also holds for other theories where FOSD fails such as regret.

I show in the next section an implementation that is simple to understand for subjects and
retains incentive compatibility. I also show in the experimental results section that the collected
measure correlates well with an unincentivized measure.

4 Experimental Design

Overview. Subjects are told that there are 200 boxes, half of which are golden (good) and half are
wooden (bad). Boxes also contain 10 colored balls in them. These balls are colored red or blue and
the composition depends on the box’s type. The relationship between color composition and box
types differs across three between-subject treatments. Subjects are tasked with choosing between
two boxes and go through three sets of choice tasks in random order. Subjects choose without
knowing the boxes’ types. But they may observe a sample of balls drawn with replacements from
the boxes. After each choice, I elicit a measure of confidence. Subjects make, over the three sets of
choice tasks, 16 choices in total.12

12Examples of the instructions, choice interface, and payment are provided in the online appendix.
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Treatments. Subjects faced one of three treatments, which differed in the way the composition
of balls in the box was determined. Two of the treatments have the color compositions fully
determined by the box’s type. In these treatments, as balls are drawn with replacements, they
are iid conditional on the box’s type. A third treatment involves uncertainty regarding the box’s
composition as the box’s type does not fully determine it. Samples in this third treatment are
therefore not iid conditional on the box’s type. I summarize in Table 2 the compositions. Note for
all the treatments, a red ball is a good signal while a blue ball is a bad signal.

Table 2: Summary of Treatment Types Given Box Type

Treatment Type Golden Box Wooden Box

Symmetric 7 red balls & 3 blue balls 7 blue balls & 3 red balls
Asymmetric 8 red balls & 2 blue balls 4 blue balls & 6 red balls
Correlated 4 red balls & 6 random balls 4 blue balls & 6 random balls

Note: "random" indicates balls equally likely to be red or blue, determined independently.

Choice Tasks. Each subject sees three sets of choices in random order. Two of the three sets of
choices are called comparative choice. These involve choosing between boxes, for each of which the
subject sees a sample of signals. These two sets differ in the number of total signals in each sample.
A third set of choices is called belief updating. For this task, subjects choose between one box with
a fixed chance of being golden and another with a sample of signals. From the two comparative
choice tasks, I elicit 10 indifference curves. From the belief updating tasks, I elicit 4 indifference
curves. All elicitations are done via a multiple-choice list where I elicit the subject’s switching
point. See Appendix B.3 for an example.

Comparative Choice Tasks. The choices from the two comparative choice tasks are as follows.
Subjects are told that one box already drew a specific number of red balls out of 4. The other box
has yet to draw any balls and subjects can choose based on the realized draw. For example, they
can choose the first box whenever the second box draws less than 6 out of 10 red balls. The two
sets of choice tasks differ in the number of balls drawn from this second box, which is either 10 or
25. I now elaborate on the specifics of the two tasks. Denote by (x, n) a box that drew x red balls
out of n.

Size 4 vs Size 10: One set of ICs is elicited by asking for each y ∈ {0, 1, 2, 3, 4} the number xy of
red balls such that (xy + 1, 10) ⪰ (y, 4) ⪰ (xy, 10). Therefore xy + 1 is the smallest number of red
balls out of 10 that the subject deems to be better evidence of a golden box than y red balls out of
4. This gives me a bound for 5 indifference curves, and I use xy + 0.5 as in the indifference point
in my estimation whenever xy ̸= 0 or xy ̸= 10, in which case I use xy = 0 and xy = 10. In other
words, I take (xy + 0.5, 10) ∼ (y, 4) to hold whenever xy /∈ {0, 10}.

Size 4 vs Size 25: One set of ICs is elicited by asking for each y ∈ {0, 1, 2, 3, 4} the number xy
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such that (xy + 1, 25) ⪰ (y, 4) ⪰ (xy, 25). This gives me a bound for 5 indifference curves, one
for each of (y, 4). I use xy + 0.5 as in the indifference point in my estimation whenever xy ̸= 0 or
xy ̸= 25, in which case I use xy = 0 and xy = 25. In other words, I take (xy + 0.5, 10) ∼ (y, 4) to
hold whenever xy /∈ {0, 25}.

Recall that red balls are good signals in every treatment. Therefore monotonicity implies
(y, n) ⪰ (y − 1, n), which implies xy ≥ xy−1. I say a subject violates monotonicity if they display
xy−1 > xy for any of the comparative tasks.

Belief Updating Task. In this task, subjects face one box with a fixed chance of being golden
and another box that has yet to draw any signal. As in the comparative tasks, she can condition
her choice on the realized draw. Denote by ℓy a box with y probability of being golden with
y ∈ {0.25, 0.75}. I also elicit through 6 choice tasks xys such that (x4y + 1, 4) ⪰ ℓy ⪰ (x4y, 4),
(x10y + 1, 10) ⪰ ℓy ⪰ (x10y , 10) and (x25y + 1, 25) ⪰ ℓy ⪰ (x25y , 25). This gives me 4 indifference
curves revealed through probabilistic equivalents. As before, I take the midpoint to be the point of
indifference. This gives (x4y + 0.5, 4) ∼ (x10y + 0.5, 10) ∼ (x25y + 0.5, 25) whenever these midpoints
are well defined, I use the extreme points of 0, 4, 10, 25 if xy ever equals these values.

Confidence Elicitation. Additionally, after each choice, the subject is given two options. I imple-
ment a simple form of my confidence elicitation mechanism. In particular, the subject is told that
there is a statistically correct choice, which maximizes the probability of choosing a golden box.
After each of the above choices, they are given two options:

(i) Always use the current choice.

(ii) 50% chance to learn the correct choice and can choose again, 49% chance to use the current
choice, 1% chance of earning nothing.

Note that subjects are not guaranteed to learn the correct choice. Therefore, they are still
incentivized, even if they choose option (ii), to give what they believe is the correct choice. Choosing
option (ii) is a sufficient condition for the subject to perceive value in learning the correct choice.
While it is not a necessary condition, it allows distinguishing between subjects who perceive a
high enough value in learning the correct choice versus those who do not. I note finally that this
learning occurs at the end of the experiment, therefore there is no risk of contamination from
learning.

I also opt to inform the subjects of the statistically correct choice instead of replacing their
choice. This is important as there may be subjects who wish to learn the statistically correct choice
but not implement it. For instance, they may use it as a reference and then bias their own choice
accordingly. This allows for a stronger test of lack of confidence.
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I also collect, at the end of the study, an unincentivized, binary measure. Subjects are asked to
report whether they believe they were close to the correct choice for most of the questions or not.13

Randomization and Order. Subjects are randomly assigned one of three treatments. Within the
treatments, they are assigned a random order of blocks. The blocks are the two comparative choice
tasks and the belief updating task. Within the blocks, to help with the consistency of choices,
subjects always start by evaluating the box with the lowest value and each following box is the
immediate next highest in value. Therefore, it is straightforward to respect monotonicity as a
subject only needs to remember their last choice. Subjects are informed that one of their choices
was randomly selected at the start of the study for payment. It is independent of their choices
in the experiment. This theoretically eliminates hedging possibilities across tasks. Finally, the
outcome of the confidence elicitation mechanism is only shown at the end of the experiment once
the subject sees the task chosen for payment. This eliminates the mental burden of potentially
having to learn and change their choices for many tasks, but more importantly, it prevents learning
and contamination across questions.

5 Experimental Tests and Results

Background. I collected responses from 400 Prolific subjects. Subjects were paid $2.5 USD for
completing the study, with a chance to earn a bonus payment of $5. The median completion time
was 17 minutes, and around 60% of the subjects earned a bonus payment. Subjects were screened
and had to pass a comprehension task. To participate, subjects needed an approval rate between
97%-99%, to have completed at least 100 studies, and to reside in the US. In the comprehension
task, they are explicitly taught the monotonicity condition concerning red balls. Subjects can only
start the actual tasks after demonstrating they understand the monotonicity condition. The study
was pre-registered on Aspredicted.org.14

Variables and Measures. I focus on the indifference curves (ICs) and first study whether they
are parallel straight lines in the aggregate and whether they differ by treatment. I then consider
individual choices via three measures. The first measure quantifies whether an individual’s ICs are
parallel straight lines. For each indifference curve, I compute its angle relative to the x-axis. This
yields 10 angles for each individual for the comparative choice tasks. The standard deviation of the
angles should be close to 0 for straight parallel lines. Therefore, the larger this is, the less parallel
the ICs must be. The second measure captures for each choice whether the subject chose according
to the proportion of red balls (good signals) and neglected the sample size. For each choice, the
subject chooses the minimal xny , n ∈ {10, 25}, such that (xny , n) ⪰ (y, 4), for each y ∈ {0, 1, 2, 3, 4}. I
say that the subject’s choice is consistent with a sample size neglect if |x

n
y

n − y
4 | ≤ 0.05. This implies

13See online appendix for an example.
14Please see here for pre-registration details.
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Table 3: Summary Statistics

Pooled Symmetric Asymmetric Correlated
Full Sub Full Sub Full Sub Full Sub

Standard Deviation of IC Angles 26.7 28.1 26.9 28.0 26.2 28.1 27.0 28.2
Sample Size Neglect (out of 10) 3.9 6.1 3.7 5.9 3.8 5.7 4.3 6.4
Opt to Learn (out of 10) 2.5 1.9 2.2 1.9 2.5 1.6 2.7 2.2
N 400 147 140 44 128 43 132 60

that the subject’s choice is well predicted by the sample proportion. Figure 2 illustrates the type of
ICs that would qualify. Note this is a demanding definition. For example, when n = 10 and y = 2,
then the subject needs to pick exactly xny = 5. Finally, for each choice, I collect a binary measure of
confidence, as outlined in the previous section.

Analysis Summary. I first study the ICs elicited from the comparative choice tasks. I perform
an individual analysis via the standard deviation of angles of ICs and reject separability for an
overwhelming majority of subjects. Then, I investigate how these individual measures relate to each
other. Building on the intuition from the thought experiment, I show first violations of separability
can be accounted for via sample size neglect. Then I turn to my measure of confidence. I first
corroborate its validity with the unincentivized measure. I show sample size neglect is positively
associated with higher confidence. All the above are conducted using the comparative comparison
tasks. I present at the end the ICs induced from the belief updating tasks and I show the same
pattern emerges. As pre-registered, I will present results for the full sample as well as a sub-sample
of subjects who did not violate the monotonicity condition. Non-violation is equivalent to having
non-crossing ICs. In my data, 37% of subjects have 0 IC crossings, and they constitute this sub-
sample. The theoretical maximum number of crossings is 8, and only 13% of subjects have more
or equal to 4 crossings. I give some summary statistics of these variables in Table 3.

Table 3 show a few trends. On average, the subjects have high standard deviations for the
angles of their ICs. On average, their ICs are not parallel straight lines. The average subject display
choices consistent with sample size neglect 3.9 times out of 10. The sub-sample subjects display a
much higher rate of sample size neglect, with 6.1 times out of 10 choices on average. I also find
that the sub-sample is less likely to opt to learn and, therefore, more confident in their choices.
Finally, treatment differences are not statistically significant except subjects are more likely to opt
to learn in the correlated treatment compared to the symmetric treatment for the full sample.

Aggregate ICs. I plot in Figures 3, 4, and 5 the ICs of the three treatments for a Bayesian EU
subject, the full sample, and the sub-sample, respectively. The aggregate ICs are not parallel for
either the full or sub-samples. I can test whether the crossing points on the N = 10 and N = 25

lines are different between treatments. There are 3 treatments, with 10 such points, so this gives 30
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tests. In the full sample, only 5 tests yield statistically significant differences between treatments at
p < 0.1. For the sub-sample, only 6 tests yielded statistically significant differences. There are two
takeaways. First, the aggregate ICs are not parallel straight lines. Therefore, suggesting that the
models being tested do not account for aggregate behavior well. Second, subjects are essentially
fully insensitive to the treatments This suggests that they are ignoring the likelihood and relying
mostly on sample statistics such as the proportion of red balls and the total sample size.

Standard Deviation of IC angles. Figure 6 shows the distributions of standard deviations for
the full sample and the sub-sample. In the full sample, only 5% and 20% of subjects have ICs with
angles with a standard deviation below 10 and 20 degrees, respectively. In the sub-sample, only
6% and 17% of subjects have ICs with angles with a standard deviation below 10 and 20 degrees,
respectively. Therefore, I conclude that the models are not only rejected at the aggregate level but
also the individual level for almost all subjects. Using Kolmogorov-Smirnov tests, I investigate
whether the distributions of standard deviations differ by treatment. I cannot reject the null for
the full sample and sub-sample at any significance value p ≤ 0.10. Finally, the spike at ≈ 33 is due
to subjects who display sample size neglect for almost every choice.

Sample Size Neglect and non-Parallelism. As per my pre-registration, I explore the correlation
between the standard deviation of angles of ICs and sample size neglect. The question I ask is: do
people display non-parallel ICs because they are confused, choose noisily, or because they display
sample size neglect, which is a systematic choice? The spike at 33 degrees in Figure 6 suggests
the later channel and I give additional evidence here. I regress the standard deviation of angles,
SDi on the proportion of times, out of the 10 choices, a subject displays sample size neglect, Pi.
Finally, Xi is a set of controls including sex, ethnicity, time taken (in the whole study), age as well as
treatment dummies. I estimate regression (1) and the results are presented in Table 4. Regressions
with treatment interaction terms can be found in Appendix B.2.

SDi = β0 + β1Pi + λXi + ϵi (1)

The results of the regression (Table 4) are in line with the aggregate ICs plotted earlier. There

Table 4: Non-Parallel ICs and Sample Size Neglect

SD of Angles of ICs - SDi

(1) (2) (3) (4)
Pi 11.6 11.7 19.9 19.7

(0.94) (1.00) (1.8) (1.9)
Controls/Treat.Dummy No Yes No Yes
Full/Sub-Sample Full Full Sub Sub
R2 0.19 0.20 0.47 0.48
N 400 379 147 140

Note: Robust standard errors in brackets.

is a strong correlation between sample size neglect and non-parallel ICs, which is stronger for the
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Figure 2: Sample Size Neglect ICs Figure 3: Bayesian EU IC

Figure 4: Full Sample IC Figure 5: Sub-Sample IC
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Figure 6: SD of IC Angles: Full Sample (left) and Sub-Sample (right)

sub-sample. On average, a DM who always displays sample size neglect has a standard deviation
that is 12 and 20 degrees higher than a person who never displays sample size neglect for the full
sample and sub-sample, respectively. These coefficients are statistically significant at p < 0.01 and
do not differ when treatment dummies and controls are accounted for. Furthermore, the R2s are
high at 0.2 and 0.5 for the full sample and sub-sample, respectively. This does not rule out the
possibility that subjects are choosing noisily. But allows me to conclude that a significant portion
of non-parallelism and violation of models of updating is due to sample size neglect.

Confidence and Sample Size Neglect. I first perform a sanity check by verifying that the collected
binary measure of confidence through my elicitation mechanism is highly correlated with the
unincentivized self-reported confidence measure. Denote by Oi the percentage of times (out of 10)
that a subject i opts to learn, so the higher this is, the less confident a subject is. And denote by Ci

the binary self-reported measure. This self-reported measure is 1 if the subject reports believing in
having chosen approximately correctly for most tasks, and is 0 otherwise. Finally, denote Xi a set
of controls as well as treatment dummies. I run the following regression (2) as a linear probability
model. The regression results are in Table 5. A subject who always opts to learn is, on average,
25% and 45% less likely to report that they are confident than someone who always opts out, in
the full sample and sub-sample, respectively. Note that only 52% and 64% of subjects self-report
to be confident in the full and sub-samples, respectively. Hence, the effects are significant both in
magnitude and in statistical significance, as Table 5 shows. See Appendix B.3 for logit and probit
results, which are consistent.

Ci = β0 + β1Oi + λXi + ϵi (2)
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Table 5: Self-Reported and Elicited Confidence

Self-Reported Confidence - Ci

(1) (2) (3) (4)

Oi −0.26 −0.27 −0.47 −0.44
(0.08) (0.07) (0.12) (0.13)

Controls/Treat.Dummy No Yes No Yes
Full/Sub-Sample Full Full Sub Sub
N 400 379 147 140

Note: Robust standard errors in brackets.

I test whether sample size neglect could be due to subjects not knowing how to choose and
deferring their choices to the sample proportion. Figure 7 shows that whenever a choice displays
sample size neglect, the subject is less likely to opt to learn for that choice. The effect is stronger
for the larger samples (25) and for the sub-sample. For these choices, not displaying sample size
neglect implies that the subject is 2.4 times more likely to opt to learn. For both the full and
sub-sample this difference is statistically significant at p < 0.05, for all choice tasks in the 4 vs 25
rounds.15 This suggests that sample size neglect is not due to confusion as subjects who display it
are more confident in their choices. The differences are highly statistically significant for the large
sample sizes.16

I also investigate this relationship in a linear regression. I denote choices by d and I set od = 1 if
the subject opts to learn for that choice and od = 0 otherwise. Similarly, I set pd = 1 if the choice d

exhibits sample size neglect and pd = 0 if it does not. Finally, Xi is a set of controls, including sex,
ethnicity, time taken (in the whole study), age, and treatment dummies. To test whether sample
neglect is related to lack of confidence, I consider the following specification (3). Table 6 presents
the results for a linear probability model. Similar results are found for a logit and probit model.
I also run the regression, as per my pre-registration, with interaction terms and found similar
results.17

od = β0 + β1pd + λXi + ϵd (3)

Table 6: Sample Size Neglect and Confidence

Opting to learn od

(1) (2) (3) (4)
sample size neglect, pd −0.10 −0.10 −0.12 −0.11

(0.013) (0.014) (0.022) (0.026)
Controls/Treat.Dummy No Yes No Yes
Full/Sub-Sample Full Full Sub Sub
N 4000 3860 1470 1410

Note: Robust standard errors in brackets.

157 out of 10 tasks has p < 0.01.
16Details are included in the online appendix.
17See Appendix B.3 for these additional regressions.
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Figure 7: Full (Left) and Sub-Sample (Right) Confidence and Sample Size Neglect

In both the full sample and the sub-sample, if the subject’s choice displays sample size neglect,
then they are around 10% less likely to opt to learn. Note this is large as the average probabilities of
opting to learn are 25% and 19% for the full and sub-samples, respectively. I conclude that sample
size neglect is not due to a lack of confidence or noisy choices. On the contrary, a willingness
to neglect the sample size and refer solely to sample proportions is associated with the subject
being more confident. This is consistent with the intuition from the thought experiment. Section
6 provides a model that rationalizes this finding.

Belief Updating Tasks. The reader might wonder whether the comparativeness of the tasks
pushes subjects to compare sample characteristics and ignore the signal likelihoods. To explore
this possibility, I use the belief updating tasks to construct 4 indifference curves, presented below
in Figure 8. The results are qualitatively similar, indifference curves still fan out, and further, the
choices again do not vary by treatment in any significant manner.

Summary of Experimental Findings. Conventional models of updating are overwhelmingly
rejected. Subjects are not sensitive to the information structure; I show that this is not driven by
confusion. Rather, subjects intentionally choose by considering the sample characteristics. Many
subjects display a sample size neglect bias. My confidence elicitation mechanism, which correlates
well with an unincentivized measure, shows that sample size neglect bias is positively correlated
with confidence.
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Figure 8: Full (Left) and Sub-Sample (Right) IC - Belief Updating

6 Likelihood Uncertainty and Signal Correlation

In this section, I discuss a natural class of belief about the signal-generating process that would
accommodate the behavior of the thought experiment. Furthermore, I show that under this belief,
it is asymptotically optimal to display sample size neglect.

Let us first reconsider the thought experiment. Recall the venture capitalist first elicited pre-
dictions from only one expert about project B, and this expert predicted success. Now, suppose
they are to guess how likely an expert is to correctly predict success for project B. Mathematically,
suppose they were asked to guess ℓ1 = Pr(predicts success|B succeeds). Having only observed
one signal, this is a difficult question to answer, and I doubt many readers would be willing to
answer a high ℓ1. However, suppose they now have observed 10 out of 10 experts predicting
success. And recall they picked B over A, so they must believe that project B will succeed with a
higher probability than A. Then, if asked again to guess ℓ2 = Pr(predicts success|B succeeds), they
must believe that the conditional term of "B succeeds" has a non-insignificant probability of being
true, therefore, the empirical frequency observed, 10 out of 10, is at least somewhat indicative
of the actual likelihood. This should incline a guess of ℓ2 > ℓ1. Note that the belief regarding
the signal-generating process changes as one observes more signals. In other words, how one
interprets signals is dependent on the sample one observes, so signals are thought to be correlated
and not independent. In particular, there is some other uncertainty regarding the likelihood of
signals, such as how hard it is to correctly predict success. These uncertainties are not fully known
or determined by the underlying state, but as the sample size grows, the DM gradually learns
about these and grows more confident.

Consider a simple binary state and binary signal type model. The state is good or bad, and
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signals are also good or bad. Therefore, samples are of the form si = (si,g, si,b), where the first entry
denotes the number of good signals and the second entry denotes the number of bad signals. Let σg
and σb denote the probability of a good signal conditional on the good and bad state, respectively.
Similarly, 1 − σg and 1 − σb denote the probability of a bad signal conditional on a good and bad
state, respectively. The DM assumes that σg and σb are drawn from CDFs Fg and Fb with convex
support on [0, 1]. Therefore, the DM faces some uncertainty regarding the signal likelihood and
believes the likelihoods to be distributed by Fg and Fb. Timing is important; the realization of
σg and σb are determined first by Fg and Fb, and then the signals are drawn according to σg and
σb. If different σg and σb are drawn for each signal, then there is no learning possible about this
likelihood uncertainty, unlike as shown in the thought experiment. This case would then not be
able to generate the behavior exhibited in the thought experiment for a Bayesian.

I illustrate first via a concrete example that relaxing the assumption that likelihoods are known
accommodates the thought experiment.

Example 1. Suppose the venture capitalist does not know how good experts are at predicting
different projects. This could be due to them not being an expert and unable to account for the
difficulty of predicting accurately. Suppose the likelihoods for both predictions of A and B are
randomly determined by σg ∼ Fg and σb ∼ Fb with Fg = U [0.5, 1] and Fb = U [0.3, 0.8]. That
is, they believe that if a project will succeed, then experts have at least a 50% chance of correctly
predicting it. However, if a project cannot succeed, then they believe experts may be fooled, and
potentially 80% could predict success. Then, the likelihood ratios of the two decisions display the
switching patterns as desired.

Note that the sign switches precisely because they now have learned more about the likelihoods
and are more confident, therefore, in what signals imply. Suppose the venture capitalist were to
be asked the probability she believes each of these choices to be correct. Then, she would assign
close to 1 to the second choice and strictly less to the first choice.

Pr(4 out of 5 | A succeeds)
Pr(4 out of 5 | A fails) =

∫ 1

0.5
σ4
g(1− σg)dσg∫ 0.8

0.3
σ4
b (1− σb)dσb

>

∫ 1

0.5
σgdσg∫ 0.8

0.3
σbdσb

=
Pr(1 out of 1 | B succeeds)

Pr(1 out of 1 | B fails) ,

Pr(40 out of 50 | A succeeds)
Pr(40 out of 50 | A fails) =

∫ 1

0.5
σ40
g (1− σg)

10dσg∫ 0.8

0.3
σ40
b (1− σb)10dσb

<

∫ 1

0.5
σ10
g dσg∫ 0.8

0.3
σ10
b dσb

=
Pr(10 out of 10 | B succeeds)

Pr(10 out of 10 | B fails) .

For the rest of the discussion, I assume that ⪰B,F is the preference relation generated by a
Bayesian EU DM who faces uncertainty F = (Fg, Fb). I also assume that ⪰B,F additionally satisfies
a weak monotonicity assumption. Monotonicity states that the DM recognizes good signals as
good news and bad signals as bad news. I show that sample size neglect is asymptotically optimal
irrespective of F given this assumption. Therefore, a DM who does not know what to believe
about Fg and Fb but knows that monotonicity is satisfied by a Bayesian can do just as well as a
Bayesian who knows Fg and Fb asymptotically by neglecting the sample size. In the following, I
define first monotonicity and sample size neglect.

Definition 3. A relation ⪰ is monotonic if ∀sg, sb ∈ N0, (sg, sb) ⪰B,F (sg − 1, sb + 1).
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Recall that objects are binary-valued, and utility can be normalized to 1 and 0. Denote by
θ1, θ2 ∈ {g, b} the object’s types. Therefore, when given two objects with samples s1, s2, we have

UB,F (s1, s2) = max {Pr(θ1 = g | s1, F ),Pr(θ2 = g | s2, F )} ,

which denotes the expected utility of the Bayesian EU DM who faces uncertainty F regarding
likelihoods. We define the expected utility of a DM who uses the sample size neglect choice and
faces F as follows:

USSN (s1, s2) =


Pr(θ1 = g | s1, F ), if s1,g

s1,g+s1,b
>

s2,g
s2,g+s2,b

,

Pr(θ2 = g | s2, F ), if s1,g
s1,g+s1,b

<
s2,g

s2,g+s2,b
,

1
2 [Pr(θ2 = g | s2, F ) + Pr(θ1 = g | s1, F )], if s1,g

s1,g+s1,b
=

s2,g
s2,g+s2,b

.

Given that UB,F maximizes the choice’s expected utility and USNN ignores the key statistical
information provided from F and s1, s2, we have that UB,F (s1, s2) ≥ USSN (s1, s2) in general. But
the next result shows that asymptotically, the differences disappear.

Proposition 2. If ⪰B,F is monotonic, then ∀s1, s2 ∈ N2
0, lim

κ→∞
UB,F (κs1, κs2)− USSN (κs1, κs2) = 0.

This proposition suggests why sample sizes are often ignored and why subjects can remain
confident while ignoring sample sizes. Furthermore, it is consistent with our increasing comfort in
ignoring the sample size and focusing on the proportion of good signals as sample sizes increase.
The proof is contained in Appendix A.3, where I also show that the result is not restricted to binary
signal types.

7 Conclusion

In this paper, I consider a DM who chooses between objects that are associated with samples.
While this is a natural setting, I deviate from the literature on belief updating to study the empirical
content of updating models in the context of samples. I theoretically characterize the empirical
content of a wide class of models. Then, I illustrate a natural choice pattern which all these
models fail to rationalize. These models are then tested and thoroughly rejected in a controlled
experimental setting. The thought experiment suggests that the main discrepancy lies in that these
models assume the DM is fully confident in how to interpret signals. Instead, subjects behave as
if using a sample size neglect heuristic, which I show is asymptotically optimal whenever there
is uncertainty regarding signal interpretation. Using a novel incentive-compatible confidence
elicitation mechanism, I show that sample size neglect is positively correlated with confidence. This
is predicted by a model of signal uncertainty and suggested intuitively by the thought experiment.
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A Proofs

A.1 Theorem 1

Throughout, I denote samples by x, y, z instead of s1, s2, s3 to save a subscript. I denote by πx
t

the percent of signals of type t in x as well as Nx the total sample size of x.
1) ⇒ 4). Pick any values of {σg,t, σb,t}t∈T . Then note for any samples x and y, the DM always

strictly prefers the one with a higher posterior. If the updating rule is strictly monotonic, which is
equivalent to having a likelihood ratio representation, then the DM always strictly prefers a sample
with a higher likelihood ratio. Then we see that

L(x) =

[
T∏
t=1

σ
πx
t

g,t/
T∏
t=1

σ
πx
t

b,t

]Nx

and L(y) =

[
T∏
t=1

σ
πy
t

g,t/
T∏
t=1

σ
πy
t

b,t

]Ny

.

This then gives

L(x) > L(y) if and only if Nx

T∑
t=1

πx
t log(

σg,t
σb,t

) > Ny

T∑
t=1

πy
t log(

σg,t
σb,t

).

Then choosing ut = log(
σg,t

σb,t
) shows that 1) ⇒ 4).

To show 4) ⇒ 1), suppose ⪰ is such that ∃{ut} such that

x ⪰ y if and only if Nx

T∑
t=1

πx
t ut ≥ Ny

T∑
t=1

πy
t ut.

Then from above, we simply need to find λts and α > 0 such that the condition below holds.
Then we can set σg,t = σb,t exp(αut).

∀t, σb,t exp(αut) ∈ (0, 1) and σb,t ∈ (0, 1).

Note that this is simply a matter of scaling, as exp(αut) is always positive. So we can always
find a set of σb,ts small enough.

Now consider 2)/3) and 4), first 4) ⇒ 2)/3) is immediate by the functional form.
I start by showing that 3) ⇒ 4). Denote by Q the set of non-negative rationals. Then, QT is the

set of samples with rational numbers of signals of each type. I define an extension of ⪰ on QT ,
denoted by ⪰∗. Note that QT is what Shepherdson (1980) calls a multiplier space under mixtures
with ratios in QT . This is because, for any two rationals, their mixture by a ratio α that is itself a
rational will be another rational. Shepherdson (1980) shows that ⪰∗ over such a space has a linear
cardinal representation if and only if it satisfies three properties:

• Completeness+Transitivity.

• Closure of {α | xαy ⪰∗ z} and {α | xαy ⪯∗ z} in Q (as a subspace of [0, 1]).

30



• Mixture: x ⪰∗ y implies xαz ⪰∗ xαy.

Therefore, if we can extend ⪰ to ⪰∗ while giving it these properties, then we know there is a linear
representation for ⪰.

Pick any x, y ∈ QT , then they can be rewritten as (x1
d , ...xT

d ) and (y1d , ...,
yT
d ) where x̃ =

(x1, .., xT ) ∈ NT
0 and ỹ = (y1, .., yT ) ∈ NT

0 . I say x ⪰∗ y if and only if x̃ ⪰ ỹ. Note that there is more
than one way to rewrite it, but by mixture, these must agree under ⪰. Suppose x = x̃ · 1

d = x · 1
c

and y = ỹ · 1
d = y · 1

c . Let d > c, then if x ⪰ y, by mixture, x c
d0 ⪰ y c

d0, which is equivalent to x̃ ⪰ ỹ.
Note ⪰∗ is complete by definition. For any two vectors, x and y, with rational numbers as

entries, suffice to multiply them by ΠT
t=1xtyt as the denominator to obtain x̃, ỹ ∈ NT

0 .
Consider transitivity of a triples, x, y, z samples. Then rewrite them as x = x̃

d , y = ỹ
d , and z = z̃

d

where x̃, ỹ, z̃ ∈ NT
0 . Then suppose x ⪰∗ y, then x̃ ⪰ ỹ and similarly ỹ ⪰ z̃. So by transitivity of ⪰,

x̃ ⪰ z̃ which implies x ⪰∗ z.
Mixture is exactly like transitivity. Pick any x, y, α, z, we can rewrite all the terms as x̃, ỹ, z̃.

Then if x ⪰∗ y, we have x̃ ⪰ ỹ. Which implies x̃αz̃ ⪰ ỹαz̃, which implies xαz ⪰∗ yαz.
Closure is directly given by the axiom. Note that{α |xαy ⪰∗ z} is the same as{α | ∀κ, (κx)α(κy) ⪰

κz}. This concludes that ⪰ has an extension ⪰∗, which has a linear utility form. Which implies ⪰
itself has such a representation. This concludes 3) ⇒ 4).

I now show 2) ⇒ 3) by showing separability and transitivity implies mixture. Suppose we
have x ⪰ y, then we want to show xαz ⪰ yαz. Note firstly that separability implies that x ⪰ y and
x′ ⪰ y′ then x+x′ ⪰ y+ y′. This is done by three applications of separability plus transitivity of ⪰.

For mixture to be well defined, we haveαx, αy are samples of form (αx1, ..., αxt) and (αy1, ..., αyt)

with integer entries. Note then that the smallestα = 1
N , which can work for both to be well defined,

is when N is the largest common denominator of xts and yts. Similarly, any α that can work is of
the form k

N . Note then suffice to show that x ⪰ y implies αx ⪰ αy, then using separability with
(1 − α)z yields mixture. First note that 1

N x ⪰ 1
N y; if not, then we can apply separability on both

sides and obtain x ≺ y. Then this gives for any k
N we have k

N x ⪰ k
N y as desired. This completes

the proof.

A.2 Proposition 1

I consider a subject who must choose from a set of actions a ∈ A. The subject has a payoff
function π : A × A → Z. The set Z denotes the potential consequences of her choices. It could
be objective, e.g., monetary values, or subjective, e.g., subjective belief about the probability of
winning, and I assume there is an outcome zw that is understood by all subjects to be the worst
one. π(a, a∗) denotes the consequence should the subject choose a when a∗ is the correct choice.
Correct can be objective, as in the case of belief updating, or it could be subjective as in the case
of dictator games or lottery choices. Finally, I denote by s ∈ S a set of signal realizations. The
subject may believe signals are correlated to the correct action a∗. I assume that π(a, a∗) is uniquely
maximized at a = a∗ for each a∗. This implies that not knowing the correct choice is payoff-relevant.
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I note that these signals do not provide any value of information regarding uncertainties intrinsic
to the experiment (such as lottery outcomes). The only instrumental value they can provide is
in terms of the correctness of action ex-ante any resolution of uncertainty. The subject has some
belief about the correct choice a∗. I say a subject is confident in knowing a∗ whenever they assign
probability 1 to some a∗ ∈ A. If a subject is confident, then nothing can change her belief about
a∗. Therefore, a confident subject should assign zero instrumental value to any signal, whether the
subject believes it to be correlated with the correct action or not. The following example illustrates
one common experimental setting that this framework nests.

Example 2. Consider eliciting a subject’s probabilistic belief p that an event E occurred via some
incentive-compatible mechanism, (Karni, 2009; Hossain and Okui, 2013). The correct belief, given
the available information, is the Bayesian p∗. The subject reports p and is paid π(p, p∗) that is
uniquely maximized at p = p∗ whenever the elicitation is incentive-compatible. A set of signals
could be to reveal to the subject the correct Bayesian posterior, in which case S = [0, 1]. Note this
is only valuable if the subject is not confident that their report is the correct one.

Given the above setup, I propose the following confidence elicitation mechanism:

• The subject is asked to submit an action a ∈ A and a number δ ∈ [0, 1].

1. With probability δ2, they get zw.

2. With probability 1− δ, they get π(a, a∗).

3. With probability (1− δ)δ, they observe a signal s and can change their action.

In the case of the correct choice being objective and known to the researcher, she can set S = A

and allow the signal to reveal the correct action. The procedure, in this case, allows the subject
to be paid as if they knew the correct action a∗ with some probability. The subject’s belief about
a∗ may be a probability distribution over A or a set of possible a∗s depending on the theory of
confidence that is chosen. Any such theory generates values V2 and V3 for the second and third
outcomes of the above mechanism. Furthermore, any such theory can generate V2 < V3 only when
the belief about a∗ is not degenerate, and the signal is expected to be informative. I assume the
DM’s attitude towards the lottery generated by the mechanism satisfies FOSD. That is given any
choice of δ, the DM faces a lottery with values 0, V2 and, V3, normalizing the value of zw to 0. Then
FOSD implies that the DM picks δ > 0 only if V2 > V3 which I show is only possible if she lacks
confidence.

Proposition 3. Suppose the DM’s attitude regarding the lottery induced by the mechanism satisfies strict
FOSD then δ > 0 only if the DM lacks confidence.

Proof : I will show that this holds for theories that assign either a probability over actions (over
their correctness) and for theories that consider a set of actions to be correct. Suffice to show that
V2 = V3 whenever the DM is confident in a∗ being correct with probability 1. In this case, consider
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S∗ as the set of signals the DM expects to be possible given a∗. No conventional theory of updating
can assign a positive probability to a state that previously had 0 probability.18 Therefore, the value
of observing any signal is 0, as the DM does not expect to change her belief. And if her attitude
towards the mechanism is strictly FOSD then she does not acquire information.

A.3 Proposition 2

Proposition 2 is restricted to the binary signal case. I show here a more general T signal-type
case. I consider a measure M of a sample, for instance, the average star rating or the percentage of
good reviews, defined as follows.

Definition 4. M is a sample measure if M(s) = M(κs) for κs ∈ NT
0 .

A sample measure depends only on the distribution of signal types and not the sample size.
When two samples have the same sample size, it is natural to use such a measure to choose. I
show that if one chooses via such a measure when samples’ sizes are equal, then one also chooses
optimally when sizes are unequal but sufficiently large. Recall payoffs are normalized at 1 and 0 for
good and bad objects. Denote byUB(s1, s2|F ) = max{p(g|F, s1), p(g|F, s2)} the utility of a Bayesian
EU DM. Similarly denote by UM (s1, s2|F ) = p(g|F, s1) if M(s1) > M(s2) and UM (s1, s2|F ) =

p(g|F, s2) if M(s1) < M(s2), in case M(s1) = M(s2), UM (s1, s2|F ) = 1
2 [p(g|F, s1) + p(g|F, s2)]. UM

is the expected utility of a DM who uses a M measure heuristic for her choices.

Proposition 4. Let F and M be such that ∀|s1| = |s2|, p(g|F, s1) > p(g|F, s2) if and only if M(s1) >

M(s2), then lim
κ→∞

UB(κs1, κs2|F )− UM (κs1, κs2|F ) = 0.

Note if M is taken to be the sample proportion of success, then the precondition ∀|s1| =

|s2|, p(g|F, s1) > p(g|F, s2) is implied by monotonicity. Therefore, this proposition implies Propo-
sition 2.

Proof: Note first that any sample s gives an empirical likelihood σs = [ s
1

|s| , ..,
sT

|s| ] = [σs
1, ..., σ

s
T ], I

first show the following lemma. Denote by fg, fb the pdfs of F .
Pick any signal x and denote by Σ the set of T -dimensional likelihoods then the following

18The only exceptions are theories that consider observing signals which are not possible given the DM current
belief such as Ortoleva (2012). However, the DM does not expect to receive such signals and hence in her information
acquisition decision she does not account for these.
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holds.

lim
N→∞

p(g|x, F )

p(b|x, F )
= lim

N→∞

p(g)

p(b)

∫
Σ fg(σ)[σ

σx
1

1 ...σ
σx
T

T ]NdTσ∫
Σ fb(σ)[σ

σx
1

1 ...σ
σx
T

T ]NdTσ
,

= lim
N→∞

p(g)

p(b)

∫
Σ fg(σ)e

N [
∑T

i=1 σ
x
i ln(σi)]dTσ∫

Σ fg(σ)e
N [

∑T
i=1 σ

x
i ln(σi)]dTσ

,

= lim
N→∞

p(g)

p(b)

(2πN )
T
2
fg(σg,x)eN

∑T
i=1 σx

i ln(σ
g,x
i

)

|−H(fg)(σg,x)|
1
2

(2πN )
T
2
fb(σb,x)eN

∑T
i=1

σx
i

ln(σ
b,x
i

)

|−H(fb)(σb,x)|
1
2

,

=


p(g)
p(b)

fg(σg,x)
fb(σb,x)

if
∑T

t=1 σ
x
t ln(σ

b,x
t ) =

∑T
t=1 σ

x
t ln(σ

g,x
t ),

∞ if
∑T

t=1 σ
x
t ln(σ

b,x
t ) <

∑T
t=1 σ

x
t ln(σ

g,x
t ),

0 if
∑T

t=1 σ
x
t ln(σ

b,x
t ) >

∑T
t=1 σ

x
t ln(σ

g,x
t ).

Where σg,x = arg max
fg(σ)>0

T∑
t=1

σx
t ln(σ

g,x
t ) and σb,x = arg max

fb(σ)>0

T∑
t=1

σx
t ln(σ

b,x
t ). Line 2 to 3 is by

Laplace’s method. H(fg)(σ
g,x) is the determinant of the Hessian of fg evaluated at σg,x so it is

finite. Laplace’s method requires a unique maximizer, which may not occur. I show that this
can be circumvented. Note that if x has strictly positive observations for each signal type, then∑T

i=t σ
x
t ln(σ

g,x
t ) is strictly quasi-concave in σg,x

t , suffice to note ln(αz + (1− α)w) > α ln(z) + (1−
α) ln(w) by strict concavity. Now suppose x has signals types with zero observations, then note
that any two accuracies σ1, σ2 which assign the same values to the non-zero types will satisfy∑T

t=1 σ
x
i ln(σ

1
t ) =

∑T
t=1 σ

x
t ln(σ

2
t ). So, we can "compress" the signal type space and rewrite Fg, Fb

so that the maximizer is unique. Denote by T x the set of types for which x has zero observation.
Then, define the signal space Σ∗ to have for types where x has non-zero observation and a type
t∗. Then, defining Fg, Fb accordingly will yield distributions where the function has a unique
maximizer.

Take any x and y, then note that as sample size grows, the two ways for UB(κx, κy|F ) −
UM (κx, κy|F ) > 0 to hold is if 1) both x, y are in the first category and the heuristic M orders
them incorrectly or 2) x, y are in different categories respectively and the heuristic M orders them
incorrectly. If we have both x, y in category 2 or 3, then asymptotically picking either has the same
payoff, so UB = UM .

Then take any x, y and suppose x, y are both in the first category. Suppose wlog that M(x) >

M(y). Consider w = κ|x|y and z = κ|y|x; note these two have the same sample size, and we can
make these arbitrarily big. Then we have w ≻ z which gives fg(σg,x)

fb(σb,x)
>

fg(σg,y)
fb(σb,y)

. So, the Bayesian
choice coincides with the heuristic choice. Take any x, y, in two different categories; suppose
wlog that the Bayesian posterior of x converges to 1 while that of y converges to 0. Then note
M(x) > M(y) by the same argument as above. The same argument applies to other cases.
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B Additional Regressions and Multiple Price List Example

B.1 Regression with Interaction Terms

I regress specifications (1) and (2) with treatment interaction as

SDi = β0 +
∑
t∈T

δtβ1,tPi +
∑
t∈T

δtDt + λXi + ϵi, and

od = β0 +
∑
t∈T

δtβ1,tpd +
∑
t∈T

δtDt + λXi + ϵd.

Table 7: Non-Parallel ICs and Sample Size Neglect

SD of Angles of ICs - SDi

(1) (2) (3) (4)
β1,sym 12.5 12.0 19.9 21.0

(1.2) (1.8) (1.8) (2.5)
β1,asy 10.7 11.3 19.9 17.4

(1.2) (1.7) (1.8) (3.9)
β1,cor 11.6 12.3 19.9 20.9

(1.0) (1.6) (1.8) (3.8)
Controls/Treat.Dummy No Yes No Yes
Full/Sub-Sample Full Full Sub Sub
R2 0.19 0.22 0.47 0.49
N 400 386 147 141

Note: Robust standard errors in brackets.

Table 8: Opting to Learn and Sample Size Neglect

Opt To Learn - od
(1) (2) (3) (4)

β1,sym −0.13 −0.10 −0.12 −0.08
(0.02) (0.02) (0.03) (0.04)

β1,asy −0.09 −0.08 −0.16 −0.11
(0.02) (0.02) (0.03) (0.04)

β1,cor −0.09 −0.12 −0.10 −0.13
(0.2) (0.02) (0.03) (0.04)

Controls/Treat.Dummy No Yes No Yes
Full/Sub-Sample Full Full Sub Sub

Note: Robust standard errors in brackets.
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B.2 Logit and Probit Regressions for Specification (2) and (3)

Table 9: Self-Report and Elicited Confidence - Logit

Self-Reported Confidence - Ci

(1) (2) (3) (4)
Oi −1.11 −1.26 −1.91 −1.95

(0.34) (0.35) (0.60) (0.62)
Controls/Treat.Dummy No Yes No Yes
Full/Sub-Sample Full Full Sub Sub
N 400 391 147 146

Note: Robust standard errors in brackets.

Table 10: Self-Report and Elicited Confidence - Probit

Self-Reported Confidence - Ci

(1) (2) (3) (4)
Oi −0.69 −0.79 −1.18 −1.20

(0.21) (0.21) (0.37) (0.38)
Controls/Treat.Dummy No Yes No Yes
Full/Sub-Sample Full Full Sub Sub
N 400 386 147 141

Note: Robust standard errors in brackets.

Table 11: Sample Size Neglect and Confidence- Logit

Opting to learn od

(1) (2) (3) (4)
pd, sample size neglect −0.53 −0.57 −0.73 −0.71

(0.08) (0.14) (0.08) (0.14)
Controls/Treat.Dummy No Yes No Yes
Full/Sub-Sample Full Full Sub Sub
N 4000 3860 1470 1410

Note: Robust standard errors in brackets.
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Table 12: Sample Size Neglect and Confidence - Probit

Opting to learn od

(1) (2) (3) (4)
pd, sample size neglect −0.31 −0.33 −0.41 −0.41

(0.05) (0.05) (0.08) (0.08)
Controls/Treat.Dummy No Yes No Yes
Full/Sub-Sample Full Full Sub Sub
N 4000 3860 1470 1410

Note: Robust standard errors in brackets.
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B.3 Multiple Price List Example

Figure 9: Example of MPL Choice
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A Online Appendix

A.1 Some Further Implementation Subleties

Before moving on, I discuss three subtleties about the implementation of the mechanism.
First, when there is an objectively correct action, one may wonder if it is better to offer subjects

a chance to replace their action with the objectively correct one. The answer is no because subjects
may not perceive the objectively correct answer as payoff maximizing. However, they may believe
(erroneously) that the objectively correct action is related to the subjectively correct action, in which
case there is still gain in learning it and less gain in the action being replaced. For instance, consider
a subject who learns that the Bayesian posterior is 0.99. She may consider that to be too extreme
and report 0.7. For such a subject, she may still find value in learning the Bayesian posterior but
be unwilling to replace her report with the Bayesian posterior.

Second, the cost they incur is a probability of obtaining the zw outcome. The cost is probabilistic
to guarantee incentive compatibility for non-risk-neutral individuals. For risk-neutral individuals,
imposing a flat fee can be optimal.

Third, the signal can be used to elicit the source of lack of confidence. For instance, consider
a subject who is not confident in her choice between lotteries. Some theories explain this as
the subject having difficulty in computing the expected value, while other theories highlight the
subject’s uncertainty regarding her own risk attitudes. To test the first theory, the signal offered
could be simply the expected value. If subjects are willing to pay for it, then it must be that the
signal is valuable in clarifying uncertainty regarding a∗. Similarly, if a subject is uncertain of her
own risk attitude, perhaps they will know better after making other choices. Option 3 could be
simply the possibility of coming back to this choice.

B Online Appendix: Theoretical Notes

B.1 Updating Rules Details

I first begin with a proposition that shows that the thought experiment conflicts with updating
rules that are weakly monotone in the likelihood ratio. Then, I individually analyze the above
rules.

Proposition 5. A preference relation ⪰ is said to display "switching" if ∃s1, s2, κ such that s1 ≻ s2 and
κs1 ≺ κs2. A preference relation ⪰ is said to be derived from an updating rule that is weakly monotonic in
the likelihood ratio if ∃σg, σb such that L(s1|σg, σb) ≥ L(s2|σg, σb) implies s1 ⪰ s2. If ⪰ is derived from an
updating rule that is weakly monotonic in the likelihood ratio, then it cannot display switching.

Proof : Suppose ⪰ is derived from a rule that is weakly monotone in the likelihood ratio. Then
s1 ≻ s2 implies L(s1|σg, σb) > L(s2|σg, σb). Then, if it displays switching, we must have some
s1 ≻ s2 and yet κs2 ≻ κs2. So we must have L(s1|σg, σb)κ < L(s1|σg, σb)κ which contradicts the
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earlier statement.

Table 13: Updating Rules and Relation with Actual and Thought Experiments

Updating Rules Rejected By Literature
Actual Exp. Thought Exp.

Bayesian Updating Yes Yes Bayes and Price (1763)
Grether Updating Yes Yes Grether (1980); Möbius et al. (2022)
Weighted Bayesian Yes Yes Epstein et al. (2010); Kovach (2021)
Divisible Updating Yes Yes Cripps (2018)
Coarse Bayesian No Yes Jakobsen (2021)
Confirmatory Bias Yes Yes Rabin and Schrag (1999)
Size/Proportion Model No Yes Griffin and Tversky (1992)
Inertial Updating No No Dominiak et al. (2023)

I now provide some additional details for the updating rules of Table 13. I show that a wide class
of models of non-Bayesian updating are functions of the likelihood ratio in this binary state set-
ting. Denote by ℓg(s) = p(s|g, σ)where s is a sample. And denote by pB(g|s) the Bayesian posterior.

Bayesian updating: The Bayesian posterior ratio is proportional to the likelihood ratio and also,
therefore, strictly increasing.

Grether updating: p(g|s) = p(g)βℓg(s)δ

p(g)βℓg(s)δ+(1−p(g))βℓb(s)δ
.

Note the posterior ratio of the states is:[ p(g)
1−p(g) ]

β[
ℓg(s)
ℓb(s)

]δ where δ ≥ 0 is the signal reaction term.
Therefore, the posterior ratio is weakly increasing and a function of the likelihood ratio whenever
δ ≥ 0. If δ > 0, which is the standard estimate, otherwise the DM is ignoring information, then it
is strictly increasing.

Motivated Beliefs: p(g|s) = αp∗ + (1− α)pB(g|s).
This updating rule is a convex combination of the Bayesian posterior and some arbitrary belief

p∗. Taking p∗ to be the prior would lead to underreaction. As the Bayesian posterior increases in
the likelihood ratio, this updating rule is also. Similarly, whenever α < 1, whenever the DM does
update, it is strictly increasing.

Divisible Updating: It is shown in Cripps (2018) that a divisible updating rule must be ho-
mogeneous of degree 0 to the likelihoods of a signal. Therefore, if two samples have the same
likelihood ratio, they will have the same posterior under a divisible updating rule. So, the updating
rule is a function of the likelihood ratio.

Coarse Bayesian: this updating rule stipulates that there are convex subsetsP1, .., PN of [0, 1] each
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with a "representative" probability p1 ∈ P1, ..., pn ∈ Pn. The updating rule says that if pB(g|s) ∈ Pi,
then p(g|s) = pi. So if the Bayesian posterior is in Pi, then the posterior is pi. As convex subsets
must be intervals, this updating rule is a function of the Bayesian posterior, which is a function
of the likelihood ratio. This updating rule is not strictly increasing but weakly increasing and,
therefore, cannot account for the thought experiment.

Size/Proportion Model: Griffin & Tversky propose, for a restrictive environment a regression
that attempts to capture the weight of proportion of good signals, π, and sample size, N , in a DM’s
belief updating. Their regression only applies with prior p = 0.5 and when the signal structure is
symmetric with σg = 1 − σb. So technically this is not an updating rule. Their regression can be
mapped as an updating rule in this specific setting. In particular, they estimate:

ln(ln(
p(g|s)

1− p(g|s)
)) = α1 ln(2π − 1) + α2 ln(N) + ϵ.

The idea here is that α1 = α2 implies Bayesian updating when the prior is uninformative
p(g) = 0.5. Note that this is not separable but can still not accommodate the thought experiment.
If two samples of size N1, N2 are multiplied to κN1, κN2, then they have a +α2 ln(κ), and therefore
any inequalities are preserved.

Confirmatory Bias: This is technically a special type of perception rule; my setting is a little
different as signals arrive together in one batch, whereas they model sequential observation with
binary signals. However, the sequence turns out not to matter, so a faithful way of importing their
model is to assume the DM has a bias for a state and may misperceive a signal for the other state
as a signal for the biased state with probability q. Therefore, each sample (π,N) is changed to
(π(1− q), N) or (π + (1− π)q,N), the rest is Bayesian updating.

Suppose a DM uses such an updating rule and perceives signals as iid. Then, by Theorem
1, the updating rule is strictly monotonic if and only if the ⪰ is separable. As we already have
transitivity, completeness, and continuity.

Let x = (π1, N1) and y = (π2, N2). If x ⪰ y then the DM’s belief σg, σb and bias in updating
q ∈ (0, 1) satisfy

σ
π1(1−q)N1
g (1− σg)

(1+π1(q−1))N1

σ
π1(1−q)N1

b (1− σb)(1+π1(q−1))N1

≥ σ
π2(1−q)N2
g (1− σg)

(1+π1(q−1))N2

σ
π2(1−q)N2

b (1− σb)(1+π2(q−1))N2

.

This then implies that

π1(1− q)N1 ln(
σg

σb
) + (1 + π1(q − 1))N1 ln(

1− σg

1− σb
) ≥ π2(1− q)N2 ln(

σg

σb
) + (1 + π2(q − 1))N2 ln(

1− σg

1− σb
).
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Now let z = (π3, N3) then note the new logged likelihoods of x+ z and x+ y are the following

[π1(1− q)N1 + π3(1− q)N3] ln(
σg

σb
) + [(1 + π1(q − 1))N1 + (1 + π3(q − 1))N3] ln(

1− σg

1− σb
)

≥ [π2(1− q)N2 + π3(1− q)N3] ln(
σg

σb
) + [(1 + π2(q − 1))N2 + (1 + π3(q − 1))N3] ln(

1− σg

1− σb
).

Note separability holds, and therefore, the updating rule is a monotonic function of the likeli-
hood ratio.

Inertial Updating: Dominiak et al. (2023) follow a long line of literature which tries to model
updating via a minimization problem involving the prior, likelihoods and posterior (Jaynes, 1957;
Good et al., 1963; Williams, 1980; Shore and Johnson, 1980; Caticha and Giffin, 2006; Zhu et al.,
2014). While the literature traditionally focused on Bayesian updating, Dominiak et al. (2023)
contribute by showing it can be used to study non-Bayesian updating, and more importantly give
it behavioral foundations. Their updating rule can be rewritten as

p(g|s) = g(p(g))f(ℓg(s))

g(p(g))f(ℓg(s)) + g(1− p(g))f(ℓb(s))
.

As f and g have flexible functional forms, the posterior need not be increasing in the likelihood
ratio. The generality of this representation is due to the authors’ commitment to a simple axioma-
tization, and the paper offers several special cases that satisfy monotonicity in likelihood ratio. In
private conversation, the authors have shared they also strongly agree with monotonicity being a
weak property.

B.2 Non-binary qualities with known accuracy is equivalent to binary quality with
unknown accuracy

I show in this section that relaxing the assumption that the mental model has binary states,
with known signal likelihoods, produces the same behavioral predictions as holding the binary
state assumption and relaxing instead that signals likelihoods are known.

I say that ⪰ has a non-binary Bayesian expected utility representation with known accuracy if
there is a set of qualities q ∈ Q, a positive and non-zero utility assigned to each quality u(q), and
for each quality a likelihood over signals of each type σq = (σq,1, .., σq,T ), a prior p(q) over qualities,
such that

x ⪰ y if and only if
∑
Q

u(q)p(q|x) ≥
∑
Q

u(q)p(q|y).

This can be rewritten as follows∑
Q

u(q)
p(q)p(x|q)

p(x)
≥

∑
Q

uq
p(q)p(y|q)

p(y)
,
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then I write out the likelihoods,

∑
Q

u(q)p(q)

∏
t∈T σxt

q,t

p(x)
≥

∑
Q

u(q)p(q)

∏
t∈T σyt

q,t

p(y)
,

and I expand the denominator,

∑
Q

u(q)p(q)

∏
t∈T σxt

q,t∑
Q p(q′)

∏
t∈T σxt

q′,t

≥
∑
Q

u(q)p(q)

∏
t∈T σyt

q,t∑
Q p(q′)

∏
t∈T σyt

q′,t

.

I show that if ⪰ has the above representation, then it also has a binary quality representation
with accuracy uncertainty with Bayesian updating and expected utility.

Then a Bayesian expected utility maximizer with a set q ∈ Q of potential accuracies, distribution
pg, pb over accuracies given quality, and p(g) priors behave as follows. Note for each accuracy q, I
denote the vector by σq = (σq,1,, .., σq,T ). Note that p(g)pg(q)

p(g)pg(q)+p(b)pb(q)
= p(g|q). First note now the

DM chooses based on posterior therefore

x ⪰ y if and only if p(g|x) ≥ p(g|y).

This can be written as follows ∑
Q

p(g, q|x) ≥
∑
Q

p(g, q|y),

and then transformed by Bayesian updating

∑
Q

p(g, q)p(x|g, q)∑
Q[p(g, q

′) + p(b, q′)]p(x|q′)
≥

∑
Q

p(g, q)p(y|g, q)∑
Q[p(g, q

′) + p(b, q′)]p(y|q′)
,

and writing out the likelihoods,

∑
Q

pg(q)p(g)
∏

t∈T σxt
q,t∑

Q[pg(q
′)p(g) + pb(q′)p(b)]

∏
t∈T σxt

q′,t

≥
∑
Q

pg(q)p(g)
∏

t∈T σyt

q,t∑
Q[pg(q

′)p(g) + pb(q′)p(b)]
∏

t∈T σyt

q′,t

.

To show the equivalence of the two representations, suffice to show that first for a given u(q)

and p(q), we can find pg, pb and p(g) such that u(q)p(q) = pg(q)p(g) and p(q) = p(g)pg(q)+p(b)pb(q).
And then show that for a given pg, pb and p(g) we can find u(q) and p(q) where the equations hold.

Start with fixed p(q) and u(q), note that since the utility is linear, we can normalize u(q)

such that
∑

Q u(q)p(q) ∈ (0, 1) and all terms are positive, which implies all u(q) ∈ (0, 1). Set
p(g) =

∑
Q u(q)p(q) ∈ (0, 1) and set pb(q)p(b) = p(q)[1 − u(q)]. Then pg(q) = u(q)p(q)∑

Q u(q)p(q) will
ensure u(q)p(q) = pg(q)p(g) and sum up to 1 as desired so it is a probability distribution. Note
p(b) = 1− p(g) then setting pb(g) =

[1−u(q)]p(q)
1−

∑
Q u(q)p(q) ∈ (0, 1) ensures the second equation holds while

making sure it sums to one. The other direction is analogous.
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C Online Appendix: Additional Tables

Table 14: Opting to Learn Given Sample Size Neglect

% of Subjects Who Opt to Learn

% of Sample Size Neglect Sample Size Neglect No Sample Size Neglect
Choice Task Full Subsample Full Subsample Full Subsample

0/4 vs 10 23% 42% 27% 26% 31% 27%
1/4 vs 10 39% 64% 22% 15% 28% 25%
2/4 vs 10 28% 34% 27% 18% 22% 18%
3/4 vs 10 58% 72% 19% 13% 28% 27%
4/4 vs 10 42% 71% 11% 10% 24% 14%
0/4 vs 25 39% 66% 21% 21% 37% 40%
1/4 vs 25 38% 54% 19% 13% 29% 30%
2/4 vs 25 38% 68% 20% 11% 33% 34%
3/4 vs 25 48% 69% 16% 10% 29% 28%
4/4 vs 25 42% 76% 12% 11% 27% 28%
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D Online Appendix: Experimental Instructions

D.1 Instructions

Figure 10: Symmetric Treatment Instructions
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Figure 11: Asymmetric Treatment Instructions
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Figure 12: Correlated Treatment Instructions
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Figure 13: Payment and Choice Example
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Figure 14: Confidence Elicitation Instructions

Figure 15: Comprehension Check
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D.2 Choice Examples

Figure 16: Comparative 4 vs 10 Balls Example
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Figure 17: Comparative 4 vs 25 Balls Example
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Figure 18: Belief Elicitation 4 Balls Example

D.3 Pre-Payment and Payment

Figure 19: Unincentivized Confidence Elicitation
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Figure 20: Learning from the Confidence Elicitation Mechanism Example

Figure 21: Final Payment Example
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